THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS

We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2016-01, Vol.58 (1), p.153-176
Hauptverfasser: BRANDENBURSKY, MICHAEL, GAL, ŚWIATOSŁAW R., KĘDRA, JAREK, MARCINKOWSKI, MICHAŁ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 153
container_title Glasgow mathematical journal
container_volume 58
creator BRANDENBURSKY, MICHAEL
GAL, ŚWIATOSŁAW R.
KĘDRA, JAREK
MARCINKOWSKI, MICHAŁ
description We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.
doi_str_mv 10.1017/S0017089515000129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778043779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089515000129</cupid><sourcerecordid>1778043779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e3166a261dc68d8c6298fb8c9fc73eeb6abb5b677ee6f7fcd53bee2377323563</originalsourceid><addsrcrecordid>eNp1kM1PwjAYxhujiYj-Ad6aePEybFfarsc5BiwZWzIWP07L2nUGAgxbOPjf2wUORuPl_cjze568eQG4x2iEEeZPS-QqCgTFFLnRFxdggMdMeBSJt0sw6GWv16_BjbVrtxK3DUBUzmMYhVkUp2lYJnkGs7xYwDCbwF6ZxfkiLot3mE_hc-Il2UtYJGFWwte8mMBeSqLlLbhq643Vd-c-BOU0LqO5l-azJApTT40ZOXiaYMZqn-FGsaAJFPNF0MpAiVZxorVktZRUMs61Zi1vVUOJ1NonnBOfUEaG4PEUuzfd51HbQ7VdWaU3m3qnu6OtMOcBGjtcOPThF7rujmbnjnMUoQQxivpAfKKU6aw1uq32ZrWtzVeFUdV_tfrzVechZ0-9lWbVfOgf0f-6vgGVLXGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735306506</pqid></control><display><type>article</type><title>THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>BRANDENBURSKY, MICHAEL ; GAL, ŚWIATOSŁAW R. ; KĘDRA, JAREK ; MARCINKOWSKI, MICHAŁ</creator><creatorcontrib>BRANDENBURSKY, MICHAEL ; GAL, ŚWIATOSŁAW R. ; KĘDRA, JAREK ; MARCINKOWSKI, MICHAŁ</creatorcontrib><description>We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089515000129</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Cancellation ; Construction ; Geometry ; Graphs ; Mathematical models ; Norms ; Origins ; Studies ; Subgroups</subject><ispartof>Glasgow mathematical journal, 2016-01, Vol.58 (1), p.153-176</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e3166a261dc68d8c6298fb8c9fc73eeb6abb5b677ee6f7fcd53bee2377323563</citedby><cites>FETCH-LOGICAL-c463t-e3166a261dc68d8c6298fb8c9fc73eeb6abb5b677ee6f7fcd53bee2377323563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089515000129/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>BRANDENBURSKY, MICHAEL</creatorcontrib><creatorcontrib>GAL, ŚWIATOSŁAW R.</creatorcontrib><creatorcontrib>KĘDRA, JAREK</creatorcontrib><creatorcontrib>MARCINKOWSKI, MICHAŁ</creatorcontrib><title>THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.</description><subject>Algorithms</subject><subject>Cancellation</subject><subject>Construction</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Origins</subject><subject>Studies</subject><subject>Subgroups</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1PwjAYxhujiYj-Ad6aePEybFfarsc5BiwZWzIWP07L2nUGAgxbOPjf2wUORuPl_cjze568eQG4x2iEEeZPS-QqCgTFFLnRFxdggMdMeBSJt0sw6GWv16_BjbVrtxK3DUBUzmMYhVkUp2lYJnkGs7xYwDCbwF6ZxfkiLot3mE_hc-Il2UtYJGFWwte8mMBeSqLlLbhq643Vd-c-BOU0LqO5l-azJApTT40ZOXiaYMZqn-FGsaAJFPNF0MpAiVZxorVktZRUMs61Zi1vVUOJ1NonnBOfUEaG4PEUuzfd51HbQ7VdWaU3m3qnu6OtMOcBGjtcOPThF7rujmbnjnMUoQQxivpAfKKU6aw1uq32ZrWtzVeFUdV_tfrzVechZ0-9lWbVfOgf0f-6vgGVLXGc</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>BRANDENBURSKY, MICHAEL</creator><creator>GAL, ŚWIATOSŁAW R.</creator><creator>KĘDRA, JAREK</creator><creator>MARCINKOWSKI, MICHAŁ</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS</title><author>BRANDENBURSKY, MICHAEL ; GAL, ŚWIATOSŁAW R. ; KĘDRA, JAREK ; MARCINKOWSKI, MICHAŁ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e3166a261dc68d8c6298fb8c9fc73eeb6abb5b677ee6f7fcd53bee2377323563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cancellation</topic><topic>Construction</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Origins</topic><topic>Studies</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRANDENBURSKY, MICHAEL</creatorcontrib><creatorcontrib>GAL, ŚWIATOSŁAW R.</creatorcontrib><creatorcontrib>KĘDRA, JAREK</creatorcontrib><creatorcontrib>MARCINKOWSKI, MICHAŁ</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRANDENBURSKY, MICHAEL</au><au>GAL, ŚWIATOSŁAW R.</au><au>KĘDRA, JAREK</au><au>MARCINKOWSKI, MICHAŁ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><spage>153</spage><epage>176</epage><pages>153-176</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089515000129</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2016-01, Vol.58 (1), p.153-176
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_miscellaneous_1778043779
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete
subjects Algorithms
Cancellation
Construction
Geometry
Graphs
Mathematical models
Norms
Origins
Studies
Subgroups
title THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20CANCELLATION%20NORM%20AND%20THE%20GEOMETRY%20OF%20BI-INVARIANT%20WORD%20METRICS&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=BRANDENBURSKY,%20MICHAEL&rft.date=2016-01-01&rft.volume=58&rft.issue=1&rft.spage=153&rft.epage=176&rft.pages=153-176&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089515000129&rft_dat=%3Cproquest_cross%3E1778043779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735306506&rft_id=info:pmid/&rft_cupid=10_1017_S0017089515000129&rfr_iscdi=true