Human - robot collision detection and identification based on fuzzy and time series modelling
In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In...
Gespeichert in:
Veröffentlicht in: | Robotica 2015-11, Vol.33 (9), p.1886-1898 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1898 |
---|---|
container_issue | 9 |
container_start_page | 1886 |
container_title | Robotica |
container_volume | 33 |
creator | Dimeas, Fotios Avendaño-Valencia, L. D. Aspragathos, Nikos |
description | In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods. |
doi_str_mv | 10.1017/S0263574714001143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778041830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574714001143</cupid><sourcerecordid>3890208681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gssbAE7NixnRFVQJEqMQAjipz4Urlq7GInQ_vrcdoOCMR0p7vvPb07hK4puaOEyvs3kgtWSC4pJ4RSzk7QhHJRZkoIdYom4zob9-foIsZVYhjlcoI-50OnHc5w8LXvcePXaxutd9hAD00_dtoZbA243ra20ftRrSMYnJp22O22e6K3HeAIwULEnTeQfNzyEp21eh3h6lin6OPp8X02zxavzy-zh0XWMMX6TBAuDGglwYhWEqNqRUReFOkUJViZa0lBlpqUhVKguNRGEcLAtLxIODdsim4PvpvgvwaIfdXZ2KQM2oEfYkWlVIRTxUhCb36hKz8El9Ilisu8yFkuE0UPVBN8jAHaahNsp8O2oqQaH179eXjSsKNGd3WwZgk_rP9VfQOvuoDr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747252327</pqid></control><display><type>article</type><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><source>Cambridge University Press Journals Complete</source><creator>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</creator><creatorcontrib>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</creatorcontrib><description>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574714001143</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Human ; Modelling ; Robots ; Time series</subject><ispartof>Robotica, 2015-11, Vol.33 (9), p.1886-1898</ispartof><rights>Copyright © Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</citedby><cites>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574714001143/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Dimeas, Fotios</creatorcontrib><creatorcontrib>Avendaño-Valencia, L. D.</creatorcontrib><creatorcontrib>Aspragathos, Nikos</creatorcontrib><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><title>Robotica</title><addtitle>Robotica</addtitle><description>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</description><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Human</subject><subject>Modelling</subject><subject>Robots</subject><subject>Time series</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gssbAE7NixnRFVQJEqMQAjipz4Urlq7GInQ_vrcdoOCMR0p7vvPb07hK4puaOEyvs3kgtWSC4pJ4RSzk7QhHJRZkoIdYom4zob9-foIsZVYhjlcoI-50OnHc5w8LXvcePXaxutd9hAD00_dtoZbA243ra20ftRrSMYnJp22O22e6K3HeAIwULEnTeQfNzyEp21eh3h6lin6OPp8X02zxavzy-zh0XWMMX6TBAuDGglwYhWEqNqRUReFOkUJViZa0lBlpqUhVKguNRGEcLAtLxIODdsim4PvpvgvwaIfdXZ2KQM2oEfYkWlVIRTxUhCb36hKz8El9Ilisu8yFkuE0UPVBN8jAHaahNsp8O2oqQaH179eXjSsKNGd3WwZgk_rP9VfQOvuoDr</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Dimeas, Fotios</creator><creator>Avendaño-Valencia, L. D.</creator><creator>Aspragathos, Nikos</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><author>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Human</topic><topic>Modelling</topic><topic>Robots</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimeas, Fotios</creatorcontrib><creatorcontrib>Avendaño-Valencia, L. D.</creatorcontrib><creatorcontrib>Aspragathos, Nikos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimeas, Fotios</au><au>Avendaño-Valencia, L. D.</au><au>Aspragathos, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human - robot collision detection and identification based on fuzzy and time series modelling</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>9</issue><spage>1886</spage><epage>1898</epage><pages>1886-1898</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574714001143</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2015-11, Vol.33 (9), p.1886-1898 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778041830 |
source | Cambridge University Press Journals Complete |
subjects | Fuzzy Fuzzy logic Fuzzy set theory Human Modelling Robots Time series |
title | Human - robot collision detection and identification based on fuzzy and time series modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20-%20robot%20collision%20detection%20and%20identification%20based%20on%20fuzzy%20and%20time%20series%20modelling&rft.jtitle=Robotica&rft.au=Dimeas,%20Fotios&rft.date=2015-11-01&rft.volume=33&rft.issue=9&rft.spage=1886&rft.epage=1898&rft.pages=1886-1898&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574714001143&rft_dat=%3Cproquest_cross%3E3890208681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747252327&rft_id=info:pmid/&rft_cupid=10_1017_S0263574714001143&rfr_iscdi=true |