Human - robot collision detection and identification based on fuzzy and time series modelling

In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2015-11, Vol.33 (9), p.1886-1898
Hauptverfasser: Dimeas, Fotios, Avendaño-Valencia, L. D., Aspragathos, Nikos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1898
container_issue 9
container_start_page 1886
container_title Robotica
container_volume 33
creator Dimeas, Fotios
Avendaño-Valencia, L. D.
Aspragathos, Nikos
description In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.
doi_str_mv 10.1017/S0263574714001143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778041830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574714001143</cupid><sourcerecordid>3890208681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gssbAE7NixnRFVQJEqMQAjipz4Urlq7GInQ_vrcdoOCMR0p7vvPb07hK4puaOEyvs3kgtWSC4pJ4RSzk7QhHJRZkoIdYom4zob9-foIsZVYhjlcoI-50OnHc5w8LXvcePXaxutd9hAD00_dtoZbA243ra20ftRrSMYnJp22O22e6K3HeAIwULEnTeQfNzyEp21eh3h6lin6OPp8X02zxavzy-zh0XWMMX6TBAuDGglwYhWEqNqRUReFOkUJViZa0lBlpqUhVKguNRGEcLAtLxIODdsim4PvpvgvwaIfdXZ2KQM2oEfYkWlVIRTxUhCb36hKz8El9Ilisu8yFkuE0UPVBN8jAHaahNsp8O2oqQaH179eXjSsKNGd3WwZgk_rP9VfQOvuoDr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747252327</pqid></control><display><type>article</type><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><source>Cambridge University Press Journals Complete</source><creator>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</creator><creatorcontrib>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</creatorcontrib><description>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574714001143</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Human ; Modelling ; Robots ; Time series</subject><ispartof>Robotica, 2015-11, Vol.33 (9), p.1886-1898</ispartof><rights>Copyright © Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</citedby><cites>FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574714001143/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Dimeas, Fotios</creatorcontrib><creatorcontrib>Avendaño-Valencia, L. D.</creatorcontrib><creatorcontrib>Aspragathos, Nikos</creatorcontrib><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><title>Robotica</title><addtitle>Robotica</addtitle><description>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</description><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Human</subject><subject>Modelling</subject><subject>Robots</subject><subject>Time series</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gssbAE7NixnRFVQJEqMQAjipz4Urlq7GInQ_vrcdoOCMR0p7vvPb07hK4puaOEyvs3kgtWSC4pJ4RSzk7QhHJRZkoIdYom4zob9-foIsZVYhjlcoI-50OnHc5w8LXvcePXaxutd9hAD00_dtoZbA243ra20ftRrSMYnJp22O22e6K3HeAIwULEnTeQfNzyEp21eh3h6lin6OPp8X02zxavzy-zh0XWMMX6TBAuDGglwYhWEqNqRUReFOkUJViZa0lBlpqUhVKguNRGEcLAtLxIODdsim4PvpvgvwaIfdXZ2KQM2oEfYkWlVIRTxUhCb36hKz8El9Ilisu8yFkuE0UPVBN8jAHaahNsp8O2oqQaH179eXjSsKNGd3WwZgk_rP9VfQOvuoDr</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Dimeas, Fotios</creator><creator>Avendaño-Valencia, L. D.</creator><creator>Aspragathos, Nikos</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Human - robot collision detection and identification based on fuzzy and time series modelling</title><author>Dimeas, Fotios ; Avendaño-Valencia, L. D. ; Aspragathos, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6046dea87ed6f70d8b80625540086392a71e79a09588e847ad8003edf45f704d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Human</topic><topic>Modelling</topic><topic>Robots</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimeas, Fotios</creatorcontrib><creatorcontrib>Avendaño-Valencia, L. D.</creatorcontrib><creatorcontrib>Aspragathos, Nikos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimeas, Fotios</au><au>Avendaño-Valencia, L. D.</au><au>Aspragathos, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human - robot collision detection and identification based on fuzzy and time series modelling</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>9</issue><spage>1886</spage><epage>1898</epage><pages>1886-1898</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574714001143</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2015-11, Vol.33 (9), p.1886-1898
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_1778041830
source Cambridge University Press Journals Complete
subjects Fuzzy
Fuzzy logic
Fuzzy set theory
Human
Modelling
Robots
Time series
title Human - robot collision detection and identification based on fuzzy and time series modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20-%20robot%20collision%20detection%20and%20identification%20based%20on%20fuzzy%20and%20time%20series%20modelling&rft.jtitle=Robotica&rft.au=Dimeas,%20Fotios&rft.date=2015-11-01&rft.volume=33&rft.issue=9&rft.spage=1886&rft.epage=1898&rft.pages=1886-1898&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574714001143&rft_dat=%3Cproquest_cross%3E3890208681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747252327&rft_id=info:pmid/&rft_cupid=10_1017_S0263574714001143&rfr_iscdi=true