The MIXMAX random number generator
In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random numb...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2015-11, Vol.196, p.161-165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | Computer physics communications |
container_volume | 196 |
creator | Savvidy, Konstantin G. |
description | In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations. |
doi_str_mv | 10.1016/j.cpc.2015.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778036783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465515002489</els_id><sourcerecordid>1778036783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gLvgyk3inUwyk8FVKT4KLW4qdDfczNxoSh51JhX896bEtZzF3ZzvwvkYu-WQcODyYZ_Yg01S4HkCMgEQZ2zGC6XjVGfZOZsBcIgzmeeX7CqEPQAopcWM3W0_KdqsdpvFLvLYub6NumNbko8-qCOPQ--v2UWFTaCbvztn789P2-VrvH57WS0X69gKAUNscz0mlbnkoItUpwqVQ5k5XpWUWWFTRCXRlWjRgRCuIASdE5YaHBVOzNn99Pfg-68jhcG0dbDUNNhRfwyGK1WAkKoQY5VPVev7EDxV5uDrFv2P4WBOPszejD7MyYcBaUYfI_M4MTRu-K7Jm2Br6iy52pMdjOvrf-hfoWxmpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778036783</pqid></control><display><type>article</type><title>The MIXMAX random number generator</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Savvidy, Konstantin G.</creator><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><description>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2015.06.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acceptability ; Algorithms ; Deterministic chaos ; Dynamical systems ; Entropy ; Generators ; Kolmogorov K-system ; Polynomials ; Pseudo-random number generator ; Random numbers ; Randomness</subject><ispartof>Computer physics communications, 2015-11, Vol.196, p.161-165</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</citedby><cites>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2015.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><title>The MIXMAX random number generator</title><title>Computer physics communications</title><description>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</description><subject>Acceptability</subject><subject>Algorithms</subject><subject>Deterministic chaos</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Generators</subject><subject>Kolmogorov K-system</subject><subject>Polynomials</subject><subject>Pseudo-random number generator</subject><subject>Random numbers</subject><subject>Randomness</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gLvgyk3inUwyk8FVKT4KLW4qdDfczNxoSh51JhX896bEtZzF3ZzvwvkYu-WQcODyYZ_Yg01S4HkCMgEQZ2zGC6XjVGfZOZsBcIgzmeeX7CqEPQAopcWM3W0_KdqsdpvFLvLYub6NumNbko8-qCOPQ--v2UWFTaCbvztn789P2-VrvH57WS0X69gKAUNscz0mlbnkoItUpwqVQ5k5XpWUWWFTRCXRlWjRgRCuIASdE5YaHBVOzNn99Pfg-68jhcG0dbDUNNhRfwyGK1WAkKoQY5VPVev7EDxV5uDrFv2P4WBOPszejD7MyYcBaUYfI_M4MTRu-K7Jm2Br6iy52pMdjOvrf-hfoWxmpg</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Savvidy, Konstantin G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201511</creationdate><title>The MIXMAX random number generator</title><author>Savvidy, Konstantin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceptability</topic><topic>Algorithms</topic><topic>Deterministic chaos</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Generators</topic><topic>Kolmogorov K-system</topic><topic>Polynomials</topic><topic>Pseudo-random number generator</topic><topic>Random numbers</topic><topic>Randomness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savvidy, Konstantin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The MIXMAX random number generator</atitle><jtitle>Computer physics communications</jtitle><date>2015-11</date><risdate>2015</risdate><volume>196</volume><spage>161</spage><epage>165</epage><pages>161-165</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2015.06.003</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2015-11, Vol.196, p.161-165 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778036783 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acceptability Algorithms Deterministic chaos Dynamical systems Entropy Generators Kolmogorov K-system Polynomials Pseudo-random number generator Random numbers Randomness |
title | The MIXMAX random number generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20MIXMAX%20random%20number%20generator&rft.jtitle=Computer%20physics%20communications&rft.au=Savvidy,%20Konstantin%20G.&rft.date=2015-11&rft.volume=196&rft.spage=161&rft.epage=165&rft.pages=161-165&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2015.06.003&rft_dat=%3Cproquest_cross%3E1778036783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778036783&rft_id=info:pmid/&rft_els_id=S0010465515002489&rfr_iscdi=true |