The MIXMAX random number generator

In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2015-11, Vol.196, p.161-165
1. Verfasser: Savvidy, Konstantin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue
container_start_page 161
container_title Computer physics communications
container_volume 196
creator Savvidy, Konstantin G.
description In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.
doi_str_mv 10.1016/j.cpc.2015.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778036783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465515002489</els_id><sourcerecordid>1778036783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gLvgyk3inUwyk8FVKT4KLW4qdDfczNxoSh51JhX896bEtZzF3ZzvwvkYu-WQcODyYZ_Yg01S4HkCMgEQZ2zGC6XjVGfZOZsBcIgzmeeX7CqEPQAopcWM3W0_KdqsdpvFLvLYub6NumNbko8-qCOPQ--v2UWFTaCbvztn789P2-VrvH57WS0X69gKAUNscz0mlbnkoItUpwqVQ5k5XpWUWWFTRCXRlWjRgRCuIASdE5YaHBVOzNn99Pfg-68jhcG0dbDUNNhRfwyGK1WAkKoQY5VPVev7EDxV5uDrFv2P4WBOPszejD7MyYcBaUYfI_M4MTRu-K7Jm2Br6iy52pMdjOvrf-hfoWxmpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778036783</pqid></control><display><type>article</type><title>The MIXMAX random number generator</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Savvidy, Konstantin G.</creator><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><description>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2015.06.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acceptability ; Algorithms ; Deterministic chaos ; Dynamical systems ; Entropy ; Generators ; Kolmogorov K-system ; Polynomials ; Pseudo-random number generator ; Random numbers ; Randomness</subject><ispartof>Computer physics communications, 2015-11, Vol.196, p.161-165</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</citedby><cites>FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2015.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><title>The MIXMAX random number generator</title><title>Computer physics communications</title><description>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</description><subject>Acceptability</subject><subject>Algorithms</subject><subject>Deterministic chaos</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Generators</subject><subject>Kolmogorov K-system</subject><subject>Polynomials</subject><subject>Pseudo-random number generator</subject><subject>Random numbers</subject><subject>Randomness</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gLvgyk3inUwyk8FVKT4KLW4qdDfczNxoSh51JhX896bEtZzF3ZzvwvkYu-WQcODyYZ_Yg01S4HkCMgEQZ2zGC6XjVGfZOZsBcIgzmeeX7CqEPQAopcWM3W0_KdqsdpvFLvLYub6NumNbko8-qCOPQ--v2UWFTaCbvztn789P2-VrvH57WS0X69gKAUNscz0mlbnkoItUpwqVQ5k5XpWUWWFTRCXRlWjRgRCuIASdE5YaHBVOzNn99Pfg-68jhcG0dbDUNNhRfwyGK1WAkKoQY5VPVev7EDxV5uDrFv2P4WBOPszejD7MyYcBaUYfI_M4MTRu-K7Jm2Br6iy52pMdjOvrf-hfoWxmpg</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Savvidy, Konstantin G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201511</creationdate><title>The MIXMAX random number generator</title><author>Savvidy, Konstantin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c59595265610982927a7da64d1fbe4c3c2aa76adbacad033d8ea095eab90de8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceptability</topic><topic>Algorithms</topic><topic>Deterministic chaos</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Generators</topic><topic>Kolmogorov K-system</topic><topic>Polynomials</topic><topic>Pseudo-random number generator</topic><topic>Random numbers</topic><topic>Randomness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savvidy, Konstantin G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savvidy, Konstantin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The MIXMAX random number generator</atitle><jtitle>Computer physics communications</jtitle><date>2015-11</date><risdate>2015</risdate><volume>196</volume><spage>161</spage><epage>165</epage><pages>161-165</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2015.06.003</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2015-11, Vol.196, p.161-165
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1778036783
source ScienceDirect Journals (5 years ago - present)
subjects Acceptability
Algorithms
Deterministic chaos
Dynamical systems
Entropy
Generators
Kolmogorov K-system
Polynomials
Pseudo-random number generator
Random numbers
Randomness
title The MIXMAX random number generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20MIXMAX%20random%20number%20generator&rft.jtitle=Computer%20physics%20communications&rft.au=Savvidy,%20Konstantin%20G.&rft.date=2015-11&rft.volume=196&rft.spage=161&rft.epage=165&rft.pages=161-165&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2015.06.003&rft_dat=%3Cproquest_cross%3E1778036783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778036783&rft_id=info:pmid/&rft_els_id=S0010465515002489&rfr_iscdi=true