Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates
A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltz...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2015-12, Vol.70 (12), p.2904-2919 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2919 |
---|---|
container_issue | 12 |
container_start_page | 2904 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 70 |
creator | Zhang, Jianying Yan, Guangwu |
description | A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE. |
doi_str_mv | 10.1016/j.camwa.2015.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778036739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122115004836</els_id><sourcerecordid>1778036739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBSwZWRKenTROBgaooCBFYoGByXqxHeQqsVs7KdCJf-AP-RJSysz0pKt7rvQOIecUEgo0v1wmErs3TBjQ2ZgkAOyATGjB05jneXFIJlCURUwZo8fkJIQlAGQpgwl5qbDvjdTRjWv7bYfWRp1Tuo0a5yPpulWr36OFsdt68K_fn18VWoVDpNcD9sbZyNhIDn5jWmM17gjnlbHY63BKjhpsgz77u1PyfHf7NL-Pq8fFw_y6imUGeR9nOceMM4B8hoxiqYCzRmUNk2XDsZS8QM5qhpwqNeNQFxmdpZzXNQVUXGXplFzsd1ferQcdetGZIHXbotVuCIJyXkCa87Qcq-m-Kr0LwetGrLzp0H8ICmInUizFr0ixE7kLR5EjdbWn9PjFxmgvgjTaSq2M17IXypl_-R-Z7X7W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778036739</pqid></control><display><type>article</type><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Jianying ; Yan, Guangwu</creator><creatorcontrib>Zhang, Jianying ; Yan, Guangwu</creatorcontrib><description>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.10.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Complex Ginzburg–Landau equation ; Computer simulation ; Curvilinear coordinates ; Discs ; Interpolation ; Lattice Boltzmann model ; Lattices ; Mathematical analysis ; Mathematical models ; Spiral wave ; Spirals</subject><ispartof>Computers & mathematics with applications (1987), 2015-12, Vol.70 (12), p.2904-2919</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</citedby><cites>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122115004836$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Jianying</creatorcontrib><creatorcontrib>Yan, Guangwu</creatorcontrib><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><title>Computers & mathematics with applications (1987)</title><description>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</description><subject>Algorithms</subject><subject>Complex Ginzburg–Landau equation</subject><subject>Computer simulation</subject><subject>Curvilinear coordinates</subject><subject>Discs</subject><subject>Interpolation</subject><subject>Lattice Boltzmann model</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spiral wave</subject><subject>Spirals</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBSwZWRKenTROBgaooCBFYoGByXqxHeQqsVs7KdCJf-AP-RJSysz0pKt7rvQOIecUEgo0v1wmErs3TBjQ2ZgkAOyATGjB05jneXFIJlCURUwZo8fkJIQlAGQpgwl5qbDvjdTRjWv7bYfWRp1Tuo0a5yPpulWr36OFsdt68K_fn18VWoVDpNcD9sbZyNhIDn5jWmM17gjnlbHY63BKjhpsgz77u1PyfHf7NL-Pq8fFw_y6imUGeR9nOceMM4B8hoxiqYCzRmUNk2XDsZS8QM5qhpwqNeNQFxmdpZzXNQVUXGXplFzsd1ferQcdetGZIHXbotVuCIJyXkCa87Qcq-m-Kr0LwetGrLzp0H8ICmInUizFr0ixE7kLR5EjdbWn9PjFxmgvgjTaSq2M17IXypl_-R-Z7X7W</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Zhang, Jianying</creator><creator>Yan, Guangwu</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><author>Zhang, Jianying ; Yan, Guangwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Complex Ginzburg–Landau equation</topic><topic>Computer simulation</topic><topic>Curvilinear coordinates</topic><topic>Discs</topic><topic>Interpolation</topic><topic>Lattice Boltzmann model</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spiral wave</topic><topic>Spirals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianying</creatorcontrib><creatorcontrib>Yan, Guangwu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianying</au><au>Yan, Guangwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>70</volume><issue>12</issue><spage>2904</spage><epage>2919</epage><pages>2904-2919</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.10.002</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2015-12, Vol.70 (12), p.2904-2919 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778036739 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Complex Ginzburg–Landau equation Computer simulation Curvilinear coordinates Discs Interpolation Lattice Boltzmann model Lattices Mathematical analysis Mathematical models Spiral wave Spirals |
title | Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20model%20for%20complex%20Ginzburg%E2%80%93Landau%20equation%20in%20curvilinear%20coordinates&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhang,%20Jianying&rft.date=2015-12-01&rft.volume=70&rft.issue=12&rft.spage=2904&rft.epage=2919&rft.pages=2904-2919&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.10.002&rft_dat=%3Cproquest_cross%3E1778036739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778036739&rft_id=info:pmid/&rft_els_id=S0898122115004836&rfr_iscdi=true |