Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates

A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2015-12, Vol.70 (12), p.2904-2919
Hauptverfasser: Zhang, Jianying, Yan, Guangwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2919
container_issue 12
container_start_page 2904
container_title Computers & mathematics with applications (1987)
container_volume 70
creator Zhang, Jianying
Yan, Guangwu
description A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.
doi_str_mv 10.1016/j.camwa.2015.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778036739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122115004836</els_id><sourcerecordid>1778036739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBSwZWRKenTROBgaooCBFYoGByXqxHeQqsVs7KdCJf-AP-RJSysz0pKt7rvQOIecUEgo0v1wmErs3TBjQ2ZgkAOyATGjB05jneXFIJlCURUwZo8fkJIQlAGQpgwl5qbDvjdTRjWv7bYfWRp1Tuo0a5yPpulWr36OFsdt68K_fn18VWoVDpNcD9sbZyNhIDn5jWmM17gjnlbHY63BKjhpsgz77u1PyfHf7NL-Pq8fFw_y6imUGeR9nOceMM4B8hoxiqYCzRmUNk2XDsZS8QM5qhpwqNeNQFxmdpZzXNQVUXGXplFzsd1ferQcdetGZIHXbotVuCIJyXkCa87Qcq-m-Kr0LwetGrLzp0H8ICmInUizFr0ixE7kLR5EjdbWn9PjFxmgvgjTaSq2M17IXypl_-R-Z7X7W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778036739</pqid></control><display><type>article</type><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Jianying ; Yan, Guangwu</creator><creatorcontrib>Zhang, Jianying ; Yan, Guangwu</creatorcontrib><description>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.10.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Complex Ginzburg–Landau equation ; Computer simulation ; Curvilinear coordinates ; Discs ; Interpolation ; Lattice Boltzmann model ; Lattices ; Mathematical analysis ; Mathematical models ; Spiral wave ; Spirals</subject><ispartof>Computers &amp; mathematics with applications (1987), 2015-12, Vol.70 (12), p.2904-2919</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</citedby><cites>FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122115004836$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Jianying</creatorcontrib><creatorcontrib>Yan, Guangwu</creatorcontrib><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><title>Computers &amp; mathematics with applications (1987)</title><description>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</description><subject>Algorithms</subject><subject>Complex Ginzburg–Landau equation</subject><subject>Computer simulation</subject><subject>Curvilinear coordinates</subject><subject>Discs</subject><subject>Interpolation</subject><subject>Lattice Boltzmann model</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spiral wave</subject><subject>Spirals</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBSwZWRKenTROBgaooCBFYoGByXqxHeQqsVs7KdCJf-AP-RJSysz0pKt7rvQOIecUEgo0v1wmErs3TBjQ2ZgkAOyATGjB05jneXFIJlCURUwZo8fkJIQlAGQpgwl5qbDvjdTRjWv7bYfWRp1Tuo0a5yPpulWr36OFsdt68K_fn18VWoVDpNcD9sbZyNhIDn5jWmM17gjnlbHY63BKjhpsgz77u1PyfHf7NL-Pq8fFw_y6imUGeR9nOceMM4B8hoxiqYCzRmUNk2XDsZS8QM5qhpwqNeNQFxmdpZzXNQVUXGXplFzsd1ferQcdetGZIHXbotVuCIJyXkCa87Qcq-m-Kr0LwetGrLzp0H8ICmInUizFr0ixE7kLR5EjdbWn9PjFxmgvgjTaSq2M17IXypl_-R-Z7X7W</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Zhang, Jianying</creator><creator>Yan, Guangwu</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</title><author>Zhang, Jianying ; Yan, Guangwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-467a4720065a21a9d072fd4f2c9f7a9c78a72b2a71dd570b8415377bb10ad7d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Complex Ginzburg–Landau equation</topic><topic>Computer simulation</topic><topic>Curvilinear coordinates</topic><topic>Discs</topic><topic>Interpolation</topic><topic>Lattice Boltzmann model</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spiral wave</topic><topic>Spirals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianying</creatorcontrib><creatorcontrib>Yan, Guangwu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianying</au><au>Yan, Guangwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>70</volume><issue>12</issue><spage>2904</spage><epage>2919</epage><pages>2904-2919</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A lattice Boltzmann model is proposed for solving the complex Ginzburg–Landau equation (CGLE) with curvilinear coordinates. The method maintains the algorithmic simplicity of the original lattice Boltzmann scheme, and does not require an interpolation or coarse-graining procedure. This lattice Boltzmann scheme is based on uniformly distributed lattice points in these curvilinear coordinate systems. The algorithm provides advantages similar to the previous lattice Boltzmann method in that it is easily adapted to CGLE. The numerical simulations show spiral wave on a disc, the surface of a sphere, and the inside of a sphere. Examples show that the model accurately reproduces the phenomena in the CGLE.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.10.002</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2015-12, Vol.70 (12), p.2904-2919
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1778036739
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Complex Ginzburg–Landau equation
Computer simulation
Curvilinear coordinates
Discs
Interpolation
Lattice Boltzmann model
Lattices
Mathematical analysis
Mathematical models
Spiral wave
Spirals
title Lattice Boltzmann model for complex Ginzburg–Landau equation in curvilinear coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20model%20for%20complex%20Ginzburg%E2%80%93Landau%20equation%20in%20curvilinear%20coordinates&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhang,%20Jianying&rft.date=2015-12-01&rft.volume=70&rft.issue=12&rft.spage=2904&rft.epage=2919&rft.pages=2904-2919&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.10.002&rft_dat=%3Cproquest_cross%3E1778036739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778036739&rft_id=info:pmid/&rft_els_id=S0898122115004836&rfr_iscdi=true