Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

Fission products, such as krypton (Kr), are known to be insoluble within UO 2 , segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM 2014-12, Vol.66 (12), p.2562-2568
Hauptverfasser: Valderrama, Billy, He, Lingfeng, Henderson, Hunter B., Pakarinen, Janne, Jaques, Brian, Gan, Jian, Butt, Darryl P., Allen, Todd R., Manuel, Michele V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2568
container_issue 12
container_start_page 2562
container_title JOM
container_volume 66
creator Valderrama, Billy
He, Lingfeng
Henderson, Hunter B.
Pakarinen, Janne
Jaques, Brian
Gan, Jian
Butt, Darryl P.
Allen, Todd R.
Manuel, Michele V.
description Fission products, such as krypton (Kr), are known to be insoluble within UO 2 , segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO 2 . Polycrystalline depleted UO 2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO 2 samples.
doi_str_mv 10.1007/s11837-014-1182-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778035028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778035028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c772ef7b49ae15faf20ed24b7d83b539ddf8739701d5b8356a612d8b1d5518493</originalsourceid><addsrcrecordid>eNp1kc1LJDEQxRtxYdX1D9hboxcvralO0kkf_Rg_WGEPuwPeQrpTGSMzyZh0y8x_b4b2IIKnegW_V9TjFcVvIOdAiLhIAJKKigCrsqqrzV5xAJzRCiSH_awJExWTVP4sDlN6IdnDWjgonmbWYj-UwZZ3UTtfXoXRGx0dpjL48k_croc8_-Ei4kIPLusrfNZvLsQy0w8xauP0gKacR-3duCpvXNg4g7-KH1YvEx5_zKNifjv7f31fPf69e7i-fKx6xpqh6oWo0YqOtRqBW21rgqZmnTCSdpy2xlgpaCsIGN5JyhvdQG1kl1cOkrX0qDiZ7oY0OJV6N2D_3AfvcyoF0EhKd9DZBK1jeB0xDWrlUo_LpfYYxqRACEkoJ7XM6OkX9CWM0ecICpo6P0IJ45mCiepjSCmiVevoVjpuFRC1K0RNhahciNoVojbZU0-elFm_wPjp8remd81EjOI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629703045</pqid></control><display><type>article</type><title>Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Valderrama, Billy ; He, Lingfeng ; Henderson, Hunter B. ; Pakarinen, Janne ; Jaques, Brian ; Gan, Jian ; Butt, Darryl P. ; Allen, Todd R. ; Manuel, Michele V.</creator><creatorcontrib>Valderrama, Billy ; He, Lingfeng ; Henderson, Hunter B. ; Pakarinen, Janne ; Jaques, Brian ; Gan, Jian ; Butt, Darryl P. ; Allen, Todd R. ; Manuel, Michele V. ; Center for Materials Science of Nuclear Fuel (CMSNF) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>Fission products, such as krypton (Kr), are known to be insoluble within UO 2 , segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO 2 . Polycrystalline depleted UO 2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO 2 samples.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-014-1182-x</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Annealing ; Chemistry/Food Science ; Computer simulation ; Earth Sciences ; Electrons ; Engineering ; Environment ; Fission products ; Fuels ; Grain boundaries ; Grain size ; Heat conductivity ; Krypton ; Microscopy ; Nuclear fission ; phonons, thermal conductivity, nuclear (including radiation effects), defects, materials and chemistry by design ; Physics ; Raw materials ; Segregations ; Studies ; Swelling ; Temperature ; Thermal conductivity ; Tomography ; Uranium ; Variance analysis</subject><ispartof>JOM, 2014-12, Vol.66 (12), p.2562-2568</ispartof><rights>The Minerals, Metals &amp; Materials Society 2014</rights><rights>Copyright Springer Science &amp; Business Media Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c772ef7b49ae15faf20ed24b7d83b539ddf8739701d5b8356a612d8b1d5518493</citedby><cites>FETCH-LOGICAL-c446t-c772ef7b49ae15faf20ed24b7d83b539ddf8739701d5b8356a612d8b1d5518493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-014-1182-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-014-1182-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1168339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Valderrama, Billy</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Henderson, Hunter B.</creatorcontrib><creatorcontrib>Pakarinen, Janne</creatorcontrib><creatorcontrib>Jaques, Brian</creatorcontrib><creatorcontrib>Gan, Jian</creatorcontrib><creatorcontrib>Butt, Darryl P.</creatorcontrib><creatorcontrib>Allen, Todd R.</creatorcontrib><creatorcontrib>Manuel, Michele V.</creatorcontrib><creatorcontrib>Center for Materials Science of Nuclear Fuel (CMSNF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide</title><title>JOM</title><addtitle>JOM</addtitle><description>Fission products, such as krypton (Kr), are known to be insoluble within UO 2 , segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO 2 . Polycrystalline depleted UO 2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO 2 samples.</description><subject>Annealing</subject><subject>Chemistry/Food Science</subject><subject>Computer simulation</subject><subject>Earth Sciences</subject><subject>Electrons</subject><subject>Engineering</subject><subject>Environment</subject><subject>Fission products</subject><subject>Fuels</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat conductivity</subject><subject>Krypton</subject><subject>Microscopy</subject><subject>Nuclear fission</subject><subject>phonons, thermal conductivity, nuclear (including radiation effects), defects, materials and chemistry by design</subject><subject>Physics</subject><subject>Raw materials</subject><subject>Segregations</subject><subject>Studies</subject><subject>Swelling</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Tomography</subject><subject>Uranium</subject><subject>Variance analysis</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1LJDEQxRtxYdX1D9hboxcvralO0kkf_Rg_WGEPuwPeQrpTGSMzyZh0y8x_b4b2IIKnegW_V9TjFcVvIOdAiLhIAJKKigCrsqqrzV5xAJzRCiSH_awJExWTVP4sDlN6IdnDWjgonmbWYj-UwZZ3UTtfXoXRGx0dpjL48k_croc8_-Ei4kIPLusrfNZvLsQy0w8xauP0gKacR-3duCpvXNg4g7-KH1YvEx5_zKNifjv7f31fPf69e7i-fKx6xpqh6oWo0YqOtRqBW21rgqZmnTCSdpy2xlgpaCsIGN5JyhvdQG1kl1cOkrX0qDiZ7oY0OJV6N2D_3AfvcyoF0EhKd9DZBK1jeB0xDWrlUo_LpfYYxqRACEkoJ7XM6OkX9CWM0ecICpo6P0IJ45mCiepjSCmiVevoVjpuFRC1K0RNhahciNoVojbZU0-elFm_wPjp8remd81EjOI</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Valderrama, Billy</creator><creator>He, Lingfeng</creator><creator>Henderson, Hunter B.</creator><creator>Pakarinen, Janne</creator><creator>Jaques, Brian</creator><creator>Gan, Jian</creator><creator>Butt, Darryl P.</creator><creator>Allen, Todd R.</creator><creator>Manuel, Michele V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20141201</creationdate><title>Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide</title><author>Valderrama, Billy ; He, Lingfeng ; Henderson, Hunter B. ; Pakarinen, Janne ; Jaques, Brian ; Gan, Jian ; Butt, Darryl P. ; Allen, Todd R. ; Manuel, Michele V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c772ef7b49ae15faf20ed24b7d83b539ddf8739701d5b8356a612d8b1d5518493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Chemistry/Food Science</topic><topic>Computer simulation</topic><topic>Earth Sciences</topic><topic>Electrons</topic><topic>Engineering</topic><topic>Environment</topic><topic>Fission products</topic><topic>Fuels</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat conductivity</topic><topic>Krypton</topic><topic>Microscopy</topic><topic>Nuclear fission</topic><topic>phonons, thermal conductivity, nuclear (including radiation effects), defects, materials and chemistry by design</topic><topic>Physics</topic><topic>Raw materials</topic><topic>Segregations</topic><topic>Studies</topic><topic>Swelling</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Tomography</topic><topic>Uranium</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valderrama, Billy</creatorcontrib><creatorcontrib>He, Lingfeng</creatorcontrib><creatorcontrib>Henderson, Hunter B.</creatorcontrib><creatorcontrib>Pakarinen, Janne</creatorcontrib><creatorcontrib>Jaques, Brian</creatorcontrib><creatorcontrib>Gan, Jian</creatorcontrib><creatorcontrib>Butt, Darryl P.</creatorcontrib><creatorcontrib>Allen, Todd R.</creatorcontrib><creatorcontrib>Manuel, Michele V.</creatorcontrib><creatorcontrib>Center for Materials Science of Nuclear Fuel (CMSNF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database (ProQuest)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>JOM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valderrama, Billy</au><au>He, Lingfeng</au><au>Henderson, Hunter B.</au><au>Pakarinen, Janne</au><au>Jaques, Brian</au><au>Gan, Jian</au><au>Butt, Darryl P.</au><au>Allen, Todd R.</au><au>Manuel, Michele V.</au><aucorp>Center for Materials Science of Nuclear Fuel (CMSNF)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide</atitle><jtitle>JOM</jtitle><stitle>JOM</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>66</volume><issue>12</issue><spage>2562</spage><epage>2568</epage><pages>2562-2568</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Fission products, such as krypton (Kr), are known to be insoluble within UO 2 , segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO 2 . Polycrystalline depleted UO 2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO 2 samples.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11837-014-1182-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM, 2014-12, Vol.66 (12), p.2562-2568
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_miscellaneous_1778035028
source SpringerLink Journals - AutoHoldings
subjects Annealing
Chemistry/Food Science
Computer simulation
Earth Sciences
Electrons
Engineering
Environment
Fission products
Fuels
Grain boundaries
Grain size
Heat conductivity
Krypton
Microscopy
Nuclear fission
phonons, thermal conductivity, nuclear (including radiation effects), defects, materials and chemistry by design
Physics
Raw materials
Segregations
Studies
Swelling
Temperature
Thermal conductivity
Tomography
Uranium
Variance analysis
title Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Grain%20Boundaries%20on%20Krypton%20Segregation%20Behavior%20in%20Irradiated%20Uranium%20Dioxide&rft.jtitle=JOM&rft.au=Valderrama,%20Billy&rft.aucorp=Center%20for%20Materials%20Science%20of%20Nuclear%20Fuel%20(CMSNF)&rft.date=2014-12-01&rft.volume=66&rft.issue=12&rft.spage=2562&rft.epage=2568&rft.pages=2562-2568&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-014-1182-x&rft_dat=%3Cproquest_osti_%3E1778035028%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629703045&rft_id=info:pmid/&rfr_iscdi=true