Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass‐specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2015-10, Vol.120 (10), p.7040-7066
Hauptverfasser: Riddick, Caitlin A. L., Hunter, Peter D., Tyler, Andrew N., Martinez-Vicente, Victor, Horváth, Hajnalka, Kovács, Attila W., Vörös, Lajos, Preston, Tom, Présing, Mátyás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7066
container_issue 10
container_start_page 7040
container_title Journal of geophysical research. Oceans
container_volume 120
creator Riddick, Caitlin A. L.
Hunter, Peter D.
Tyler, Andrew N.
Martinez-Vicente, Victor
Horváth, Hajnalka
Kovács, Attila W.
Vörös, Lajos
Preston, Tom
Présing, Mátyás
description In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass‐specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11–4.39 m−1, aph(675) = 0.048–2.52 m−1), while there was less variability in chlorophyll‐specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg−1, a*ph(675) = 0.010 ± 0.0020 m2 mg−1) and adjoining wetland system, Kis‐Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg−1, a*ph(675) = 0.0088 ± 0.0017 m2 mg−1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters. Key Points: Inherent optical properties (IOPs) are characterized in a optically complex lake IOP‐constituent relationships vary markedly from those in ocean waters Variability of specific IOPs has implications for retrievals from remote sensing
doi_str_mv 10.1002/2015JC011202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778033530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006871310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5008-f519a09fbedb114d984e662e0b4f93076272871c7c5adaa6351f3b765ed985fe3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEElXpjR9giQsHAv52fEQRbKnaIvEhjtYkGW_dZuNgZ9uu-PN4tahCHCp8GY_e5301o6mql4y-ZZTyd5wyddZSxjjlT6ojzrStLbfs6cPfqOfVSc7XtLyGNVLao-rX1xmWACO5hRSgC2NYdiR6Al2OaV5CnEgf0fvQB5yWTOItJgKkC3GNsb_CTeiLeZ1g2OskTEUcIa2RwDSQWBKKPu5KyGYe8Z7kq9LGu8Lc4IvqmYcx48mfelx9__jhW3tan39efWrfn9egyqC1V8wCtb7DoWNMDraRqDVH2klvBTWaG94Y1ptewQCghWJedEYrLKjyKI6r14fcOcWfW8yL24Tc4zjChHGbHTOmoUIoQf8DVUJqo6Ut6Kt_0Ou4TVNZxHFKdZlIMPoYxYxoSo5S-6w3B6pPMeeE3s0pbCDtHKNuf13393ULLg74XRhx9yjrzlZfWs6kbIqrPrhCXvD-wQXpxmkjjHI_LldOWNNqfmGcEr8BLTCzhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738493559</pqid></control><display><type>article</type><title>Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Riddick, Caitlin A. L. ; Hunter, Peter D. ; Tyler, Andrew N. ; Martinez-Vicente, Victor ; Horváth, Hajnalka ; Kovács, Attila W. ; Vörös, Lajos ; Preston, Tom ; Présing, Mátyás</creator><creatorcontrib>Riddick, Caitlin A. L. ; Hunter, Peter D. ; Tyler, Andrew N. ; Martinez-Vicente, Victor ; Horváth, Hajnalka ; Kovács, Attila W. ; Vörös, Lajos ; Preston, Tom ; Présing, Mátyás</creatorcontrib><description>In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass‐specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11–4.39 m−1, aph(675) = 0.048–2.52 m−1), while there was less variability in chlorophyll‐specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg−1, a*ph(675) = 0.010 ± 0.0020 m2 mg−1) and adjoining wetland system, Kis‐Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg−1, a*ph(675) = 0.0088 ± 0.0017 m2 mg−1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters. Key Points: Inherent optical properties (IOPs) are characterized in a optically complex lake IOP‐constituent relationships vary markedly from those in ocean waters Variability of specific IOPs has implications for retrievals from remote sensing</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2015JC011202</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Absorption ; Absorption coefficient ; Absorptivity ; Algorithms ; Basins ; Biogeochemistry ; Chlorophyll ; chlorophyll-a ; Chlorophylls ; Coefficients ; Constituents ; Dissolved organic matter ; Freshwater ; Geophysics ; Heterogeneity ; Inflow ; Inland waters ; IOPs ; Lake Balaton ; Lakes ; Magnesium ; Marine ; Mathematical analysis ; Oceans ; Optical properties ; Organic matter ; Particulates ; phycocyanin ; Phytoplankton ; Pigments ; Plankton ; Remote sensing ; Retrieval ; Rivers ; Sediments ; Spatial distribution ; Spatial variability ; Spatial variations ; Ultraviolet radiation ; Water inflow ; Wavelengths ; Wind speed</subject><ispartof>Journal of geophysical research. Oceans, 2015-10, Vol.120 (10), p.7040-7066</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5008-f519a09fbedb114d984e662e0b4f93076272871c7c5adaa6351f3b765ed985fe3</citedby><cites>FETCH-LOGICAL-a5008-f519a09fbedb114d984e662e0b4f93076272871c7c5adaa6351f3b765ed985fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JC011202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JC011202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids></links><search><creatorcontrib>Riddick, Caitlin A. L.</creatorcontrib><creatorcontrib>Hunter, Peter D.</creatorcontrib><creatorcontrib>Tyler, Andrew N.</creatorcontrib><creatorcontrib>Martinez-Vicente, Victor</creatorcontrib><creatorcontrib>Horváth, Hajnalka</creatorcontrib><creatorcontrib>Kovács, Attila W.</creatorcontrib><creatorcontrib>Vörös, Lajos</creatorcontrib><creatorcontrib>Preston, Tom</creatorcontrib><creatorcontrib>Présing, Mátyás</creatorcontrib><title>Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass‐specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11–4.39 m−1, aph(675) = 0.048–2.52 m−1), while there was less variability in chlorophyll‐specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg−1, a*ph(675) = 0.010 ± 0.0020 m2 mg−1) and adjoining wetland system, Kis‐Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg−1, a*ph(675) = 0.0088 ± 0.0017 m2 mg−1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters. Key Points: Inherent optical properties (IOPs) are characterized in a optically complex lake IOP‐constituent relationships vary markedly from those in ocean waters Variability of specific IOPs has implications for retrievals from remote sensing</description><subject>Absorption</subject><subject>Absorption coefficient</subject><subject>Absorptivity</subject><subject>Algorithms</subject><subject>Basins</subject><subject>Biogeochemistry</subject><subject>Chlorophyll</subject><subject>chlorophyll-a</subject><subject>Chlorophylls</subject><subject>Coefficients</subject><subject>Constituents</subject><subject>Dissolved organic matter</subject><subject>Freshwater</subject><subject>Geophysics</subject><subject>Heterogeneity</subject><subject>Inflow</subject><subject>Inland waters</subject><subject>IOPs</subject><subject>Lake Balaton</subject><subject>Lakes</subject><subject>Magnesium</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Oceans</subject><subject>Optical properties</subject><subject>Organic matter</subject><subject>Particulates</subject><subject>phycocyanin</subject><subject>Phytoplankton</subject><subject>Pigments</subject><subject>Plankton</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Rivers</subject><subject>Sediments</subject><subject>Spatial distribution</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Ultraviolet radiation</subject><subject>Water inflow</subject><subject>Wavelengths</subject><subject>Wind speed</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEElXpjR9giQsHAv52fEQRbKnaIvEhjtYkGW_dZuNgZ9uu-PN4tahCHCp8GY_e5301o6mql4y-ZZTyd5wyddZSxjjlT6ojzrStLbfs6cPfqOfVSc7XtLyGNVLao-rX1xmWACO5hRSgC2NYdiR6Al2OaV5CnEgf0fvQB5yWTOItJgKkC3GNsb_CTeiLeZ1g2OskTEUcIa2RwDSQWBKKPu5KyGYe8Z7kq9LGu8Lc4IvqmYcx48mfelx9__jhW3tan39efWrfn9egyqC1V8wCtb7DoWNMDraRqDVH2klvBTWaG94Y1ptewQCghWJedEYrLKjyKI6r14fcOcWfW8yL24Tc4zjChHGbHTOmoUIoQf8DVUJqo6Ut6Kt_0Ou4TVNZxHFKdZlIMPoYxYxoSo5S-6w3B6pPMeeE3s0pbCDtHKNuf13393ULLg74XRhx9yjrzlZfWs6kbIqrPrhCXvD-wQXpxmkjjHI_LldOWNNqfmGcEr8BLTCzhQ</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Riddick, Caitlin A. L.</creator><creator>Hunter, Peter D.</creator><creator>Tyler, Andrew N.</creator><creator>Martinez-Vicente, Victor</creator><creator>Horváth, Hajnalka</creator><creator>Kovács, Attila W.</creator><creator>Vörös, Lajos</creator><creator>Preston, Tom</creator><creator>Présing, Mátyás</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake</title><author>Riddick, Caitlin A. L. ; Hunter, Peter D. ; Tyler, Andrew N. ; Martinez-Vicente, Victor ; Horváth, Hajnalka ; Kovács, Attila W. ; Vörös, Lajos ; Preston, Tom ; Présing, Mátyás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5008-f519a09fbedb114d984e662e0b4f93076272871c7c5adaa6351f3b765ed985fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption</topic><topic>Absorption coefficient</topic><topic>Absorptivity</topic><topic>Algorithms</topic><topic>Basins</topic><topic>Biogeochemistry</topic><topic>Chlorophyll</topic><topic>chlorophyll-a</topic><topic>Chlorophylls</topic><topic>Coefficients</topic><topic>Constituents</topic><topic>Dissolved organic matter</topic><topic>Freshwater</topic><topic>Geophysics</topic><topic>Heterogeneity</topic><topic>Inflow</topic><topic>Inland waters</topic><topic>IOPs</topic><topic>Lake Balaton</topic><topic>Lakes</topic><topic>Magnesium</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Oceans</topic><topic>Optical properties</topic><topic>Organic matter</topic><topic>Particulates</topic><topic>phycocyanin</topic><topic>Phytoplankton</topic><topic>Pigments</topic><topic>Plankton</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Rivers</topic><topic>Sediments</topic><topic>Spatial distribution</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Ultraviolet radiation</topic><topic>Water inflow</topic><topic>Wavelengths</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riddick, Caitlin A. L.</creatorcontrib><creatorcontrib>Hunter, Peter D.</creatorcontrib><creatorcontrib>Tyler, Andrew N.</creatorcontrib><creatorcontrib>Martinez-Vicente, Victor</creatorcontrib><creatorcontrib>Horváth, Hajnalka</creatorcontrib><creatorcontrib>Kovács, Attila W.</creatorcontrib><creatorcontrib>Vörös, Lajos</creatorcontrib><creatorcontrib>Preston, Tom</creatorcontrib><creatorcontrib>Présing, Mátyás</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riddick, Caitlin A. L.</au><au>Hunter, Peter D.</au><au>Tyler, Andrew N.</au><au>Martinez-Vicente, Victor</au><au>Horváth, Hajnalka</au><au>Kovács, Attila W.</au><au>Vörös, Lajos</au><au>Preston, Tom</au><au>Présing, Mátyás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2015-10</date><risdate>2015</risdate><volume>120</volume><issue>10</issue><spage>7040</spage><epage>7066</epage><pages>7040-7066</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass‐specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11–4.39 m−1, aph(675) = 0.048–2.52 m−1), while there was less variability in chlorophyll‐specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg−1, a*ph(675) = 0.010 ± 0.0020 m2 mg−1) and adjoining wetland system, Kis‐Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg−1, a*ph(675) = 0.0088 ± 0.0017 m2 mg−1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters. Key Points: Inherent optical properties (IOPs) are characterized in a optically complex lake IOP‐constituent relationships vary markedly from those in ocean waters Variability of specific IOPs has implications for retrievals from remote sensing</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JC011202</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2015-10, Vol.120 (10), p.7040-7066
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1778033530
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Absorption
Absorption coefficient
Absorptivity
Algorithms
Basins
Biogeochemistry
Chlorophyll
chlorophyll-a
Chlorophylls
Coefficients
Constituents
Dissolved organic matter
Freshwater
Geophysics
Heterogeneity
Inflow
Inland waters
IOPs
Lake Balaton
Lakes
Magnesium
Marine
Mathematical analysis
Oceans
Optical properties
Organic matter
Particulates
phycocyanin
Phytoplankton
Pigments
Plankton
Remote sensing
Retrieval
Rivers
Sediments
Spatial distribution
Spatial variability
Spatial variations
Ultraviolet radiation
Water inflow
Wavelengths
Wind speed
title Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20variability%20of%20absorption%20coefficients%20over%20a%20biogeochemical%20gradient%20in%20a%20large%20and%20optically%20complex%20shallow%20lake&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Riddick,%20Caitlin%20A.%20L.&rft.date=2015-10&rft.volume=120&rft.issue=10&rft.spage=7040&rft.epage=7066&rft.pages=7040-7066&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2015JC011202&rft_dat=%3Cproquest_cross%3E2006871310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738493559&rft_id=info:pmid/&rfr_iscdi=true