On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations

The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is discussed. For spherical particles, it is shown that the usual Einstein’s formula μ/μ0=1+2.5ϕ represents an incorrect formulation of the non-interaction approximation (NIA): it violates a rigorous lower b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2015-09, Vol.94, p.71-85
Hauptverfasser: Kachanov, Mark, Abedian, Behrouz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 71
container_title International journal of engineering science
container_volume 94
creator Kachanov, Mark
Abedian, Behrouz
description The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is discussed. For spherical particles, it is shown that the usual Einstein’s formula μ/μ0=1+2.5ϕ represents an incorrect formulation of the non-interaction approximation (NIA): it violates a rigorous lower bound for the effective viscosity. The correct formulation yields the effective viscosity in the form μ/μ0=1-2.5ϕ-1 that agrees with the bounds and remains accurate at substantial volume fractions of particles ϕ (up to 20%–30% according to various data sets). This result is extended to ellipsoidal particles, with the emphasis on mixtures of particles of diverse aspect ratios and cases of anisotropic viscosity (due to non-random orientations of particles). For mixtures of particles of diverse shapes (such as ellipsoids of diverse aspect ratios), the effective viscosity cannot generally be expressed in terms of either ϕ or any other of concentration parameter, and the very concept of concentration parameters becomes questionable. The case of thin platelets is considered in detail; in this case, the concentration parameter is identified, and it is different from the volume fraction.
doi_str_mv 10.1016/j.ijengsci.2015.05.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778030335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722515000713</els_id><sourcerecordid>1778030335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5461037ace38d2fa2b0cca12b7c92d116caa768bb1c31d8e04f97e17b6cfba7d3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BenRS9dJsm3am7L4DwQveg5pOtUsa1Iz2YX99qas4lGYYZjh9x7MY-ySw4IDr6_XC7dG_07WLQTwagG5QB6xGW9UWwreqmM2AxBQKiGqU3ZGtAaASrbtjH29-CJ9YOEopBhGZwvj-9x_-86RDeTSvghDQVsa0ZMLngobfDLOO_9ejCYmZzdIE9O7HUbCgj7MmC-TX4gOM5wm3Tk7GcyG8OJnztnb_d3r6rF8fnl4Wt0-l3bJq1RWy5qDVMaibHoxGNGBtYaLTtlW9JzX1hhVN13HreR9g7AcWoVcdbUdOqN6OWdXB98xhq8tUtKf-RPcbIzHsCXNlWpAgpRVRusDamMgijjoMbpPE_eag54y1mv9m7GeMtaQK0vn7OYgxPzIzmHUmUBvsXcRbdJ9cP9ZfAMGIIyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778030335</pqid></control><display><type>article</type><title>On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kachanov, Mark ; Abedian, Behrouz</creator><creatorcontrib>Kachanov, Mark ; Abedian, Behrouz</creatorcontrib><description>The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is discussed. For spherical particles, it is shown that the usual Einstein’s formula μ/μ0=1+2.5ϕ represents an incorrect formulation of the non-interaction approximation (NIA): it violates a rigorous lower bound for the effective viscosity. The correct formulation yields the effective viscosity in the form μ/μ0=1-2.5ϕ-1 that agrees with the bounds and remains accurate at substantial volume fractions of particles ϕ (up to 20%–30% according to various data sets). This result is extended to ellipsoidal particles, with the emphasis on mixtures of particles of diverse aspect ratios and cases of anisotropic viscosity (due to non-random orientations of particles). For mixtures of particles of diverse shapes (such as ellipsoids of diverse aspect ratios), the effective viscosity cannot generally be expressed in terms of either ϕ or any other of concentration parameter, and the very concept of concentration parameters becomes questionable. The case of thin platelets is considered in detail; in this case, the concentration parameter is identified, and it is different from the volume fraction.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2015.05.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropic fluid ; Anisotropy ; Approximation ; Aspect ratio ; Ellipsoidal particles ; Formulations ; Newtonian fluids ; Orientation ; Suspension ; Viscosity ; Volume fraction</subject><ispartof>International journal of engineering science, 2015-09, Vol.94, p.71-85</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5461037ace38d2fa2b0cca12b7c92d116caa768bb1c31d8e04f97e17b6cfba7d3</citedby><cites>FETCH-LOGICAL-c415t-5461037ace38d2fa2b0cca12b7c92d116caa768bb1c31d8e04f97e17b6cfba7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2015.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Kachanov, Mark</creatorcontrib><creatorcontrib>Abedian, Behrouz</creatorcontrib><title>On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations</title><title>International journal of engineering science</title><description>The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is discussed. For spherical particles, it is shown that the usual Einstein’s formula μ/μ0=1+2.5ϕ represents an incorrect formulation of the non-interaction approximation (NIA): it violates a rigorous lower bound for the effective viscosity. The correct formulation yields the effective viscosity in the form μ/μ0=1-2.5ϕ-1 that agrees with the bounds and remains accurate at substantial volume fractions of particles ϕ (up to 20%–30% according to various data sets). This result is extended to ellipsoidal particles, with the emphasis on mixtures of particles of diverse aspect ratios and cases of anisotropic viscosity (due to non-random orientations of particles). For mixtures of particles of diverse shapes (such as ellipsoids of diverse aspect ratios), the effective viscosity cannot generally be expressed in terms of either ϕ or any other of concentration parameter, and the very concept of concentration parameters becomes questionable. The case of thin platelets is considered in detail; in this case, the concentration parameter is identified, and it is different from the volume fraction.</description><subject>Anisotropic fluid</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Aspect ratio</subject><subject>Ellipsoidal particles</subject><subject>Formulations</subject><subject>Newtonian fluids</subject><subject>Orientation</subject><subject>Suspension</subject><subject>Viscosity</subject><subject>Volume fraction</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BenRS9dJsm3am7L4DwQveg5pOtUsa1Iz2YX99qas4lGYYZjh9x7MY-ySw4IDr6_XC7dG_07WLQTwagG5QB6xGW9UWwreqmM2AxBQKiGqU3ZGtAaASrbtjH29-CJ9YOEopBhGZwvj-9x_-86RDeTSvghDQVsa0ZMLngobfDLOO_9ejCYmZzdIE9O7HUbCgj7MmC-TX4gOM5wm3Tk7GcyG8OJnztnb_d3r6rF8fnl4Wt0-l3bJq1RWy5qDVMaibHoxGNGBtYaLTtlW9JzX1hhVN13HreR9g7AcWoVcdbUdOqN6OWdXB98xhq8tUtKf-RPcbIzHsCXNlWpAgpRVRusDamMgijjoMbpPE_eag54y1mv9m7GeMtaQK0vn7OYgxPzIzmHUmUBvsXcRbdJ9cP9ZfAMGIIyc</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kachanov, Mark</creator><creator>Abedian, Behrouz</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150901</creationdate><title>On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations</title><author>Kachanov, Mark ; Abedian, Behrouz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5461037ace38d2fa2b0cca12b7c92d116caa768bb1c31d8e04f97e17b6cfba7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropic fluid</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Aspect ratio</topic><topic>Ellipsoidal particles</topic><topic>Formulations</topic><topic>Newtonian fluids</topic><topic>Orientation</topic><topic>Suspension</topic><topic>Viscosity</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kachanov, Mark</creatorcontrib><creatorcontrib>Abedian, Behrouz</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kachanov, Mark</au><au>Abedian, Behrouz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations</atitle><jtitle>International journal of engineering science</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>94</volume><spage>71</spage><epage>85</epage><pages>71-85</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is discussed. For spherical particles, it is shown that the usual Einstein’s formula μ/μ0=1+2.5ϕ represents an incorrect formulation of the non-interaction approximation (NIA): it violates a rigorous lower bound for the effective viscosity. The correct formulation yields the effective viscosity in the form μ/μ0=1-2.5ϕ-1 that agrees with the bounds and remains accurate at substantial volume fractions of particles ϕ (up to 20%–30% according to various data sets). This result is extended to ellipsoidal particles, with the emphasis on mixtures of particles of diverse aspect ratios and cases of anisotropic viscosity (due to non-random orientations of particles). For mixtures of particles of diverse shapes (such as ellipsoids of diverse aspect ratios), the effective viscosity cannot generally be expressed in terms of either ϕ or any other of concentration parameter, and the very concept of concentration parameters becomes questionable. The case of thin platelets is considered in detail; in this case, the concentration parameter is identified, and it is different from the volume fraction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2015.05.003</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2015-09, Vol.94, p.71-85
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_1778030335
source ScienceDirect Journals (5 years ago - present)
subjects Anisotropic fluid
Anisotropy
Approximation
Aspect ratio
Ellipsoidal particles
Formulations
Newtonian fluids
Orientation
Suspension
Viscosity
Volume fraction
title On the isotropic and anisotropic viscosity of suspensions containing particles of diverse shapes and orientations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20isotropic%20and%20anisotropic%20viscosity%20of%20suspensions%20containing%20particles%20of%20diverse%20shapes%20and%20orientations&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Kachanov,%20Mark&rft.date=2015-09-01&rft.volume=94&rft.spage=71&rft.epage=85&rft.pages=71-85&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2015.05.003&rft_dat=%3Cproquest_cross%3E1778030335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778030335&rft_id=info:pmid/&rft_els_id=S0020722515000713&rfr_iscdi=true