Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding

The present research aimed to fabricate Fe–TiC–Al2O3 coatings on the surface of 1045 steel by gas tungsten arc cladding process. 3TiO2–4Al–(3+x)C–yFe (x=1.5 and 3, y=0 and 1.71) mixtures were used as cladding precursors. The mixtures and the substrate were then melted using a gas tungsten arc claddi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2016-01, Vol.285, p.47-56
Hauptverfasser: Sharifitabar, M., Vahdati Khaki, J., Haddad Sabzevar, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 47
container_title Surface & coatings technology
container_volume 285
creator Sharifitabar, M.
Vahdati Khaki, J.
Haddad Sabzevar, M.
description The present research aimed to fabricate Fe–TiC–Al2O3 coatings on the surface of 1045 steel by gas tungsten arc cladding process. 3TiO2–4Al–(3+x)C–yFe (x=1.5 and 3, y=0 and 1.71) mixtures were used as cladding precursors. The mixtures and the substrate were then melted using a gas tungsten arc cladding process. Results showed that a composite containing 20vol.% reinforcing phases was fabricated using 3TiO2–4Al–4.5C–1.71Fe precursor. The composite coatings formed by a four-step mechanism including, the formation of TiC into the Fe particles in front of the molten pool, the entrance of the Fe particles to the weld pool, the dissolution of TiC into the melt and finally, re-precipitation of TiC during solidification separately or on Al2O3 particles. Also, incomplete dissolution of some TiC formed TiC–Al2O3 colonies in the structure of the coatings. The hardness of the coatings increased up to the maximum of 830 HV which improved the abrasive wear resistance of the substrate. •Fe–TiC–Al2O3 composite was fabricated on the surface of 1045 steel.•The formation mechanism of the reinforcing particles was declared.•Wear resistance of the produced composite was investigated.
doi_str_mv 10.1016/j.surfcoat.2015.11.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778030277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897215303935</els_id><sourcerecordid>1778030277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a7b4abc0513e1b9db9a773ee576a74a24272da3047a5818a6204659bfde806e33</originalsourceid><addsrcrecordid>eNqFkM9O3DAQxq2KSl2WvgLysZcE_0ni5AZalRaJigs9WxN7grwKyeJxWnHjxAv0DfskONpy7mlGM998-ubH2LkUpRSyudiXtMTBzZBKJWRdSlkK2X1gG9martC6MidsI1RtirYz6hM7JdoLIaTpqg17_RFcnCnFxaUlIofJ898IkUekQAkmh3weeJgKCmnh92H39-XP1ajuND9ATMGNSFkbpmGODj2_xqIHys2aJ0wPxA9x9su66p_5AxBPS54mnDhEx90I3mfZGfs4wEj4-V_dsp_XX-9334vbu283u6vbwumqTgWYvoLeiVpqlH3n-w6M0Yi1acBUoCpllActKgN1K1tolKiauusHj61oUOst-3L0zameFqRkHwM5HEeYcF7ISmNaoYXKrlvWHKUrH4o42EMMjxCfrRR2BW_39h28XcFbKW0Gnw8vj4eYH_kVMFpyATNIHyK6ZP0c_mfxBva6kt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778030277</pqid></control><display><type>article</type><title>Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding</title><source>Elsevier ScienceDirect Journals</source><creator>Sharifitabar, M. ; Vahdati Khaki, J. ; Haddad Sabzevar, M.</creator><creatorcontrib>Sharifitabar, M. ; Vahdati Khaki, J. ; Haddad Sabzevar, M.</creatorcontrib><description>The present research aimed to fabricate Fe–TiC–Al2O3 coatings on the surface of 1045 steel by gas tungsten arc cladding process. 3TiO2–4Al–(3+x)C–yFe (x=1.5 and 3, y=0 and 1.71) mixtures were used as cladding precursors. The mixtures and the substrate were then melted using a gas tungsten arc cladding process. Results showed that a composite containing 20vol.% reinforcing phases was fabricated using 3TiO2–4Al–4.5C–1.71Fe precursor. The composite coatings formed by a four-step mechanism including, the formation of TiC into the Fe particles in front of the molten pool, the entrance of the Fe particles to the weld pool, the dissolution of TiC into the melt and finally, re-precipitation of TiC during solidification separately or on Al2O3 particles. Also, incomplete dissolution of some TiC formed TiC–Al2O3 colonies in the structure of the coatings. The hardness of the coatings increased up to the maximum of 830 HV which improved the abrasive wear resistance of the substrate. •Fe–TiC–Al2O3 composite was fabricated on the surface of 1045 steel.•The formation mechanism of the reinforcing particles was declared.•Wear resistance of the produced composite was investigated.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2015.11.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cladding ; Coatings ; Dissolution ; Fe–TiC–Al2O3 composite ; Medium carbon steels ; Microstructure ; Particulate composites ; Titanium carbide ; Tungsten ; Wear resistance ; Weld metal pool</subject><ispartof>Surface &amp; coatings technology, 2016-01, Vol.285, p.47-56</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a7b4abc0513e1b9db9a773ee576a74a24272da3047a5818a6204659bfde806e33</citedby><cites>FETCH-LOGICAL-c345t-a7b4abc0513e1b9db9a773ee576a74a24272da3047a5818a6204659bfde806e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897215303935$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sharifitabar, M.</creatorcontrib><creatorcontrib>Vahdati Khaki, J.</creatorcontrib><creatorcontrib>Haddad Sabzevar, M.</creatorcontrib><title>Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding</title><title>Surface &amp; coatings technology</title><description>The present research aimed to fabricate Fe–TiC–Al2O3 coatings on the surface of 1045 steel by gas tungsten arc cladding process. 3TiO2–4Al–(3+x)C–yFe (x=1.5 and 3, y=0 and 1.71) mixtures were used as cladding precursors. The mixtures and the substrate were then melted using a gas tungsten arc cladding process. Results showed that a composite containing 20vol.% reinforcing phases was fabricated using 3TiO2–4Al–4.5C–1.71Fe precursor. The composite coatings formed by a four-step mechanism including, the formation of TiC into the Fe particles in front of the molten pool, the entrance of the Fe particles to the weld pool, the dissolution of TiC into the melt and finally, re-precipitation of TiC during solidification separately or on Al2O3 particles. Also, incomplete dissolution of some TiC formed TiC–Al2O3 colonies in the structure of the coatings. The hardness of the coatings increased up to the maximum of 830 HV which improved the abrasive wear resistance of the substrate. •Fe–TiC–Al2O3 composite was fabricated on the surface of 1045 steel.•The formation mechanism of the reinforcing particles was declared.•Wear resistance of the produced composite was investigated.</description><subject>Cladding</subject><subject>Coatings</subject><subject>Dissolution</subject><subject>Fe–TiC–Al2O3 composite</subject><subject>Medium carbon steels</subject><subject>Microstructure</subject><subject>Particulate composites</subject><subject>Titanium carbide</subject><subject>Tungsten</subject><subject>Wear resistance</subject><subject>Weld metal pool</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM9O3DAQxq2KSl2WvgLysZcE_0ni5AZalRaJigs9WxN7grwKyeJxWnHjxAv0DfskONpy7mlGM998-ubH2LkUpRSyudiXtMTBzZBKJWRdSlkK2X1gG9martC6MidsI1RtirYz6hM7JdoLIaTpqg17_RFcnCnFxaUlIofJ898IkUekQAkmh3weeJgKCmnh92H39-XP1ajuND9ATMGNSFkbpmGODj2_xqIHys2aJ0wPxA9x9su66p_5AxBPS54mnDhEx90I3mfZGfs4wEj4-V_dsp_XX-9334vbu283u6vbwumqTgWYvoLeiVpqlH3n-w6M0Yi1acBUoCpllActKgN1K1tolKiauusHj61oUOst-3L0zameFqRkHwM5HEeYcF7ISmNaoYXKrlvWHKUrH4o42EMMjxCfrRR2BW_39h28XcFbKW0Gnw8vj4eYH_kVMFpyATNIHyK6ZP0c_mfxBva6kt0</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Sharifitabar, M.</creator><creator>Vahdati Khaki, J.</creator><creator>Haddad Sabzevar, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160115</creationdate><title>Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding</title><author>Sharifitabar, M. ; Vahdati Khaki, J. ; Haddad Sabzevar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a7b4abc0513e1b9db9a773ee576a74a24272da3047a5818a6204659bfde806e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cladding</topic><topic>Coatings</topic><topic>Dissolution</topic><topic>Fe–TiC–Al2O3 composite</topic><topic>Medium carbon steels</topic><topic>Microstructure</topic><topic>Particulate composites</topic><topic>Titanium carbide</topic><topic>Tungsten</topic><topic>Wear resistance</topic><topic>Weld metal pool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifitabar, M.</creatorcontrib><creatorcontrib>Vahdati Khaki, J.</creatorcontrib><creatorcontrib>Haddad Sabzevar, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifitabar, M.</au><au>Vahdati Khaki, J.</au><au>Haddad Sabzevar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>285</volume><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The present research aimed to fabricate Fe–TiC–Al2O3 coatings on the surface of 1045 steel by gas tungsten arc cladding process. 3TiO2–4Al–(3+x)C–yFe (x=1.5 and 3, y=0 and 1.71) mixtures were used as cladding precursors. The mixtures and the substrate were then melted using a gas tungsten arc cladding process. Results showed that a composite containing 20vol.% reinforcing phases was fabricated using 3TiO2–4Al–4.5C–1.71Fe precursor. The composite coatings formed by a four-step mechanism including, the formation of TiC into the Fe particles in front of the molten pool, the entrance of the Fe particles to the weld pool, the dissolution of TiC into the melt and finally, re-precipitation of TiC during solidification separately or on Al2O3 particles. Also, incomplete dissolution of some TiC formed TiC–Al2O3 colonies in the structure of the coatings. The hardness of the coatings increased up to the maximum of 830 HV which improved the abrasive wear resistance of the substrate. •Fe–TiC–Al2O3 composite was fabricated on the surface of 1045 steel.•The formation mechanism of the reinforcing particles was declared.•Wear resistance of the produced composite was investigated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2015.11.019</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2016-01, Vol.285, p.47-56
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1778030277
source Elsevier ScienceDirect Journals
subjects Cladding
Coatings
Dissolution
Fe–TiC–Al2O3 composite
Medium carbon steels
Microstructure
Particulate composites
Titanium carbide
Tungsten
Wear resistance
Weld metal pool
title Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20wear%20resistance%20of%20in-situ%20TiC%E2%80%93Al2O3%20particles%20reinforced%20Fe-based%20coatings%20produced%20by%20gas%20tungsten%20arc%20cladding&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Sharifitabar,%20M.&rft.date=2016-01-15&rft.volume=285&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2015.11.019&rft_dat=%3Cproquest_cross%3E1778030277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778030277&rft_id=info:pmid/&rft_els_id=S0257897215303935&rfr_iscdi=true