Multi-antenna Wireless Energy Transfer for Backscatter Communication Systems

We study RF-enabled wireless energy transfer (WET) via energy beamforming, from a multi-antenna energy transmitter (ET) to multiple energy receivers (ERs) in a backscatter communication system such as RFID. The acquisition of the forward-channel (i.e., ET-to-ER) state information (F-CSI) at the ET (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2015-12, Vol.33 (12), p.2974-2987
Hauptverfasser: Yang, Gang, Ho, Chin Keong, Guan, Yong Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study RF-enabled wireless energy transfer (WET) via energy beamforming, from a multi-antenna energy transmitter (ET) to multiple energy receivers (ERs) in a backscatter communication system such as RFID. The acquisition of the forward-channel (i.e., ET-to-ER) state information (F-CSI) at the ET (or RFID reader) is challenging, since the ERs (or RFID tags) are typically too energy-and-hardware-constrained to estimate or feedback the F-CSI. The ET leverages its observed backscatter signals to estimate the backscatter-channel (i.e., ET-to-ER-to-ET) state information (BS-CSI) directly. We first analyze the harvested energy obtained using the estimated BS-CSI. Furthermore, we optimize the resource allocation to maximize the total utility of harvested energy. For WET to single ER, we obtain the optimal channel-training energy in a semiclosed form. For WET to multiple ERs, we optimize the channel-training energy and the energy allocation weights for different energy beams. For the straightforward weighted-sum-energy (WSE) maximization, the optimal WET scheme is shown to use only one energy beam, which leads to unfairness among ERs and motivates us to consider the complicated proportional-fair-energy (PFE) maximization. For PFE maximization, we show that it is a biconvex problem, and propose a block-coordinate-descent-based algorithm to find the close-to-optimal solution. Numerical results show that with the optimized solutions, the harvested energy suffers slight reduction of less than 10%, compared to that obtained using the perfect F-CSI.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2015.2481258