Statistical approach for activity-based model calibration based on plate scanning and traffic counts data

•Statistical method to calibrate activity-based model using plate scanning (PS) is proposed.•PS data are much more informative than link counts data.•Performance of model calibrations is evaluated from different quality and quantity of PS.•Calibrated parameter results can substantially reduce biases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological 2015-08, Vol.78, p.280-300
Hauptverfasser: Siripirote, Treerapot, Sumalee, Agachai, Ho, H.W., Lam, William H.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue
container_start_page 280
container_title Transportation research. Part B: methodological
container_volume 78
creator Siripirote, Treerapot
Sumalee, Agachai
Ho, H.W.
Lam, William H.K.
description •Statistical method to calibrate activity-based model using plate scanning (PS) is proposed.•PS data are much more informative than link counts data.•Performance of model calibrations is evaluated from different quality and quantity of PS.•Calibrated parameter results can substantially reduce biases of prior model parameters.•Model calibration using PS has much less errors than traditional calibration using link counts. Traditionally, activity-based models (ABM) are estimated from travel diary survey data. The estimated results can be biased due to low-sampling size and inaccurate travel diary data. For an accurate calibration of ABM parameters, a maximum-likelihood method that uses multiple sources of roadside observations (link counts and/or plate scanning data) is proposed. Plate scanning information (sensor path information) consists of sequences of times and partial paths that the scanned vehicles are observed over the preinstalled plate scanning locations. Statistical performances of the proposed method are evaluated on a test network using Monte Carlo technique for simulating the link flows and sensor path information. Multiday observations are simulated and derived from the true ABM parameters adopted in the choice models of activity pattern, time of the day, destination and mode. By assuming different number of plate scanning locations and identification rates, impacts of data quantity and data quality on ABM calibration are studied. The results illustrate the efficiency of the proposed model in using plate scanning information for ABM calibration and its potential for large and complex network applications.
doi_str_mv 10.1016/j.trb.2015.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778027879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191261515000995</els_id><sourcerecordid>1778027879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-f5b562d2b6530ef738946c7d4f212bbe34a7ef6e4d3a067cd0a81d40ef6316133</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVIIJs_HyA3HXuxO5JsyUtPZUnTQCCHtGcxlkaJFq-9lbQL-fZR2J4DD2YY3ht4P8buBLQChP6-bUsaWwmib6EKujO2EoNZN1Jpc85WINaikVr0l-wq5y0AqA7EisWXgiXmEh1OHPf7tKB742FJHF2Jx1jemxEzeb5bPE28uuKYamKZ-elel_2EhXh2OM9xfuU4e14ShhAdd8thLpl7LHjDLgJOmW7_z2v299f9n83v5un54XHz86lxvRxKE_qx19LLUfcKKBg1rDvtjO-CFHIcSXVoKGjqvELQxnnAQfiuWrUSWih1zb6d_tYu_w6Ui93F7GiacKblkK0wZgBpKptqFSerS0vOiYLdp7jD9G4F2E-sdmsrVvuJ1UIVdDXz45Sh2uEYKdnsIs2OfEzkivVL_CL9AVR1gZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778027879</pqid></control><display><type>article</type><title>Statistical approach for activity-based model calibration based on plate scanning and traffic counts data</title><source>Elsevier ScienceDirect Journals</source><creator>Siripirote, Treerapot ; Sumalee, Agachai ; Ho, H.W. ; Lam, William H.K.</creator><creatorcontrib>Siripirote, Treerapot ; Sumalee, Agachai ; Ho, H.W. ; Lam, William H.K.</creatorcontrib><description>•Statistical method to calibrate activity-based model using plate scanning (PS) is proposed.•PS data are much more informative than link counts data.•Performance of model calibrations is evaluated from different quality and quantity of PS.•Calibrated parameter results can substantially reduce biases of prior model parameters.•Model calibration using PS has much less errors than traditional calibration using link counts. Traditionally, activity-based models (ABM) are estimated from travel diary survey data. The estimated results can be biased due to low-sampling size and inaccurate travel diary data. For an accurate calibration of ABM parameters, a maximum-likelihood method that uses multiple sources of roadside observations (link counts and/or plate scanning data) is proposed. Plate scanning information (sensor path information) consists of sequences of times and partial paths that the scanned vehicles are observed over the preinstalled plate scanning locations. Statistical performances of the proposed method are evaluated on a test network using Monte Carlo technique for simulating the link flows and sensor path information. Multiday observations are simulated and derived from the true ABM parameters adopted in the choice models of activity pattern, time of the day, destination and mode. By assuming different number of plate scanning locations and identification rates, impacts of data quantity and data quality on ABM calibration are studied. The results illustrate the efficiency of the proposed model in using plate scanning information for ABM calibration and its potential for large and complex network applications.</description><identifier>ISSN: 0191-2615</identifier><identifier>EISSN: 1879-2367</identifier><identifier>DOI: 10.1016/j.trb.2015.05.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Calibration ; Computer simulation ; Counting ; Diaries ; Links ; Mathematical models ; Maximum-likelihood estimation ; Networks ; Plate scanning ; Scanning ; Statistical model calibration</subject><ispartof>Transportation research. Part B: methodological, 2015-08, Vol.78, p.280-300</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-f5b562d2b6530ef738946c7d4f212bbe34a7ef6e4d3a067cd0a81d40ef6316133</citedby><cites>FETCH-LOGICAL-c528t-f5b562d2b6530ef738946c7d4f212bbe34a7ef6e4d3a067cd0a81d40ef6316133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0191261515000995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids></links><search><creatorcontrib>Siripirote, Treerapot</creatorcontrib><creatorcontrib>Sumalee, Agachai</creatorcontrib><creatorcontrib>Ho, H.W.</creatorcontrib><creatorcontrib>Lam, William H.K.</creatorcontrib><title>Statistical approach for activity-based model calibration based on plate scanning and traffic counts data</title><title>Transportation research. Part B: methodological</title><description>•Statistical method to calibrate activity-based model using plate scanning (PS) is proposed.•PS data are much more informative than link counts data.•Performance of model calibrations is evaluated from different quality and quantity of PS.•Calibrated parameter results can substantially reduce biases of prior model parameters.•Model calibration using PS has much less errors than traditional calibration using link counts. Traditionally, activity-based models (ABM) are estimated from travel diary survey data. The estimated results can be biased due to low-sampling size and inaccurate travel diary data. For an accurate calibration of ABM parameters, a maximum-likelihood method that uses multiple sources of roadside observations (link counts and/or plate scanning data) is proposed. Plate scanning information (sensor path information) consists of sequences of times and partial paths that the scanned vehicles are observed over the preinstalled plate scanning locations. Statistical performances of the proposed method are evaluated on a test network using Monte Carlo technique for simulating the link flows and sensor path information. Multiday observations are simulated and derived from the true ABM parameters adopted in the choice models of activity pattern, time of the day, destination and mode. By assuming different number of plate scanning locations and identification rates, impacts of data quantity and data quality on ABM calibration are studied. The results illustrate the efficiency of the proposed model in using plate scanning information for ABM calibration and its potential for large and complex network applications.</description><subject>Calibration</subject><subject>Computer simulation</subject><subject>Counting</subject><subject>Diaries</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Maximum-likelihood estimation</subject><subject>Networks</subject><subject>Plate scanning</subject><subject>Scanning</subject><subject>Statistical model calibration</subject><issn>0191-2615</issn><issn>1879-2367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVIIJs_HyA3HXuxO5JsyUtPZUnTQCCHtGcxlkaJFq-9lbQL-fZR2J4DD2YY3ht4P8buBLQChP6-bUsaWwmib6EKujO2EoNZN1Jpc85WINaikVr0l-wq5y0AqA7EisWXgiXmEh1OHPf7tKB742FJHF2Jx1jemxEzeb5bPE28uuKYamKZ-elel_2EhXh2OM9xfuU4e14ShhAdd8thLpl7LHjDLgJOmW7_z2v299f9n83v5un54XHz86lxvRxKE_qx19LLUfcKKBg1rDvtjO-CFHIcSXVoKGjqvELQxnnAQfiuWrUSWih1zb6d_tYu_w6Ui93F7GiacKblkK0wZgBpKptqFSerS0vOiYLdp7jD9G4F2E-sdmsrVvuJ1UIVdDXz45Sh2uEYKdnsIs2OfEzkivVL_CL9AVR1gZA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Siripirote, Treerapot</creator><creator>Sumalee, Agachai</creator><creator>Ho, H.W.</creator><creator>Lam, William H.K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Statistical approach for activity-based model calibration based on plate scanning and traffic counts data</title><author>Siripirote, Treerapot ; Sumalee, Agachai ; Ho, H.W. ; Lam, William H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-f5b562d2b6530ef738946c7d4f212bbe34a7ef6e4d3a067cd0a81d40ef6316133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Computer simulation</topic><topic>Counting</topic><topic>Diaries</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Maximum-likelihood estimation</topic><topic>Networks</topic><topic>Plate scanning</topic><topic>Scanning</topic><topic>Statistical model calibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siripirote, Treerapot</creatorcontrib><creatorcontrib>Sumalee, Agachai</creatorcontrib><creatorcontrib>Ho, H.W.</creatorcontrib><creatorcontrib>Lam, William H.K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Transportation research. Part B: methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siripirote, Treerapot</au><au>Sumalee, Agachai</au><au>Ho, H.W.</au><au>Lam, William H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical approach for activity-based model calibration based on plate scanning and traffic counts data</atitle><jtitle>Transportation research. Part B: methodological</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>78</volume><spage>280</spage><epage>300</epage><pages>280-300</pages><issn>0191-2615</issn><eissn>1879-2367</eissn><abstract>•Statistical method to calibrate activity-based model using plate scanning (PS) is proposed.•PS data are much more informative than link counts data.•Performance of model calibrations is evaluated from different quality and quantity of PS.•Calibrated parameter results can substantially reduce biases of prior model parameters.•Model calibration using PS has much less errors than traditional calibration using link counts. Traditionally, activity-based models (ABM) are estimated from travel diary survey data. The estimated results can be biased due to low-sampling size and inaccurate travel diary data. For an accurate calibration of ABM parameters, a maximum-likelihood method that uses multiple sources of roadside observations (link counts and/or plate scanning data) is proposed. Plate scanning information (sensor path information) consists of sequences of times and partial paths that the scanned vehicles are observed over the preinstalled plate scanning locations. Statistical performances of the proposed method are evaluated on a test network using Monte Carlo technique for simulating the link flows and sensor path information. Multiday observations are simulated and derived from the true ABM parameters adopted in the choice models of activity pattern, time of the day, destination and mode. By assuming different number of plate scanning locations and identification rates, impacts of data quantity and data quality on ABM calibration are studied. The results illustrate the efficiency of the proposed model in using plate scanning information for ABM calibration and its potential for large and complex network applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.trb.2015.05.004</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-2615
ispartof Transportation research. Part B: methodological, 2015-08, Vol.78, p.280-300
issn 0191-2615
1879-2367
language eng
recordid cdi_proquest_miscellaneous_1778027879
source Elsevier ScienceDirect Journals
subjects Calibration
Computer simulation
Counting
Diaries
Links
Mathematical models
Maximum-likelihood estimation
Networks
Plate scanning
Scanning
Statistical model calibration
title Statistical approach for activity-based model calibration based on plate scanning and traffic counts data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20approach%20for%20activity-based%20model%20calibration%20based%20on%20plate%20scanning%20and%20traffic%20counts%20data&rft.jtitle=Transportation%20research.%20Part%20B:%20methodological&rft.au=Siripirote,%20Treerapot&rft.date=2015-08-01&rft.volume=78&rft.spage=280&rft.epage=300&rft.pages=280-300&rft.issn=0191-2615&rft.eissn=1879-2367&rft_id=info:doi/10.1016/j.trb.2015.05.004&rft_dat=%3Cproquest_cross%3E1778027879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778027879&rft_id=info:pmid/&rft_els_id=S0191261515000995&rfr_iscdi=true