Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2015-12, Vol.25 (48), p.7435-7441
Hauptverfasser: El-Ballouli, Ala'a O., Alarousu, Erkki, Kirmani, Ahmad R., Amassian, Aram, Bakr, Osman M., Mohammed, Omar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7441
container_issue 48
container_start_page 7435
container_title Advanced functional materials
container_volume 25
creator El-Ballouli, Ala'a O.
Alarousu, Erkki
Kirmani, Ahmad R.
Amassian, Aram
Bakr, Osman M.
Mohammed, Omar F.
description Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum. The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg < 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.
doi_str_mv 10.1002/adfm.201504035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778027877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778027877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEqWwMntkSXHsOHbHktJSKX1Ai-hmOY7dBvIodgL035MSVLEx3TN835HucZxrD_Y8CNGtSHTeQ9Aj0IeYnDgdL_ACF0PETo_ZW587F9a-QuhRiv2Os5h_KCPLPC02oNoqENaVO9cahFthNgqsjCisVgbciSLZiJ0FovrhFvESPNaiqOocDMsKTIpKGS2kunTOtMisuvq9Xed5dL8KH9xoPp6Eg8iVPoTEjaEgNMFUaIwJZSzpByyGDEuYIM0Q1ojEBKGAMkqklL6WTcJJ309ULFDMcNe5aXt3pnyvla14nlqpskwUqqwtb_5jEDUSbdBei0pTWmuU5juT5sLsuQf5YTp-mI4fp2uEfit8ppna_0PzwXA0_eu6rZvaSn0dXWHeeEAxJfxlNubDafQUrf0ZX-JvBXqAog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778027877</pqid></control><display><type>article</type><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</creator><creatorcontrib>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</creatorcontrib><description>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum. The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg &lt; 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201504035</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>charge carrier injection ; Charge transfer ; Charging ; Cut-off ; Energy gaps (solid state) ; interfacial electrostatic interaction ; Photonic band gaps ; photovoltaic devices ; Porphyrins ; Quantum dots ; Semiconductors ; time-resolved spectroscopy</subject><ispartof>Advanced functional materials, 2015-12, Vol.25 (48), p.7435-7441</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</citedby><cites>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201504035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201504035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>El-Ballouli, Ala'a O.</creatorcontrib><creatorcontrib>Alarousu, Erkki</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Mohammed, Omar F.</creatorcontrib><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum. The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg &lt; 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</description><subject>charge carrier injection</subject><subject>Charge transfer</subject><subject>Charging</subject><subject>Cut-off</subject><subject>Energy gaps (solid state)</subject><subject>interfacial electrostatic interaction</subject><subject>Photonic band gaps</subject><subject>photovoltaic devices</subject><subject>Porphyrins</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>time-resolved spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEqWwMntkSXHsOHbHktJSKX1Ai-hmOY7dBvIodgL035MSVLEx3TN835HucZxrD_Y8CNGtSHTeQ9Aj0IeYnDgdL_ACF0PETo_ZW587F9a-QuhRiv2Os5h_KCPLPC02oNoqENaVO9cahFthNgqsjCisVgbciSLZiJ0FovrhFvESPNaiqOocDMsKTIpKGS2kunTOtMisuvq9Xed5dL8KH9xoPp6Eg8iVPoTEjaEgNMFUaIwJZSzpByyGDEuYIM0Q1ojEBKGAMkqklL6WTcJJ309ULFDMcNe5aXt3pnyvla14nlqpskwUqqwtb_5jEDUSbdBei0pTWmuU5juT5sLsuQf5YTp-mI4fp2uEfit8ppna_0PzwXA0_eu6rZvaSn0dXWHeeEAxJfxlNubDafQUrf0ZX-JvBXqAog</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>El-Ballouli, Ala'a O.</creator><creator>Alarousu, Erkki</creator><creator>Kirmani, Ahmad R.</creator><creator>Amassian, Aram</creator><creator>Bakr, Osman M.</creator><creator>Mohammed, Omar F.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151222</creationdate><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><author>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>charge carrier injection</topic><topic>Charge transfer</topic><topic>Charging</topic><topic>Cut-off</topic><topic>Energy gaps (solid state)</topic><topic>interfacial electrostatic interaction</topic><topic>Photonic band gaps</topic><topic>photovoltaic devices</topic><topic>Porphyrins</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>time-resolved spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Ballouli, Ala'a O.</creatorcontrib><creatorcontrib>Alarousu, Erkki</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Mohammed, Omar F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Ballouli, Ala'a O.</au><au>Alarousu, Erkki</au><au>Kirmani, Ahmad R.</au><au>Amassian, Aram</au><au>Bakr, Osman M.</au><au>Mohammed, Omar F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>25</volume><issue>48</issue><spage>7435</spage><epage>7441</epage><pages>7435-7441</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum. The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg &lt; 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201504035</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2015-12, Vol.25 (48), p.7435-7441
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1778027877
source Wiley Online Library Journals Frontfile Complete
subjects charge carrier injection
Charge transfer
Charging
Cut-off
Energy gaps (solid state)
interfacial electrostatic interaction
Photonic band gaps
photovoltaic devices
Porphyrins
Quantum dots
Semiconductors
time-resolved spectroscopy
title Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20Cut-Off%20Charge%20Transfer%20Bandgaps%20at%20the%20PbS%20Quantum%20Dot%20Interface&rft.jtitle=Advanced%20functional%20materials&rft.au=El-Ballouli,%20Ala'a%20O.&rft.date=2015-12-22&rft.volume=25&rft.issue=48&rft.spage=7435&rft.epage=7441&rft.pages=7435-7441&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201504035&rft_dat=%3Cproquest_cross%3E1778027877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778027877&rft_id=info:pmid/&rfr_iscdi=true