Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface
Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor ma...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2015-12, Vol.25 (48), p.7435-7441 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7441 |
---|---|
container_issue | 48 |
container_start_page | 7435 |
container_title | Advanced functional materials |
container_volume | 25 |
creator | El-Ballouli, Ala'a O. Alarousu, Erkki Kirmani, Ahmad R. Amassian, Aram Bakr, Osman M. Mohammed, Omar F. |
description | Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.
The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg < 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface. |
doi_str_mv | 10.1002/adfm.201504035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778027877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778027877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEqWwMntkSXHsOHbHktJSKX1Ai-hmOY7dBvIodgL035MSVLEx3TN835HucZxrD_Y8CNGtSHTeQ9Aj0IeYnDgdL_ACF0PETo_ZW587F9a-QuhRiv2Os5h_KCPLPC02oNoqENaVO9cahFthNgqsjCisVgbciSLZiJ0FovrhFvESPNaiqOocDMsKTIpKGS2kunTOtMisuvq9Xed5dL8KH9xoPp6Eg8iVPoTEjaEgNMFUaIwJZSzpByyGDEuYIM0Q1ojEBKGAMkqklL6WTcJJ309ULFDMcNe5aXt3pnyvla14nlqpskwUqqwtb_5jEDUSbdBei0pTWmuU5juT5sLsuQf5YTp-mI4fp2uEfit8ppna_0PzwXA0_eu6rZvaSn0dXWHeeEAxJfxlNubDafQUrf0ZX-JvBXqAog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778027877</pqid></control><display><type>article</type><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</creator><creatorcontrib>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</creatorcontrib><description>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.
The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg < 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201504035</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>charge carrier injection ; Charge transfer ; Charging ; Cut-off ; Energy gaps (solid state) ; interfacial electrostatic interaction ; Photonic band gaps ; photovoltaic devices ; Porphyrins ; Quantum dots ; Semiconductors ; time-resolved spectroscopy</subject><ispartof>Advanced functional materials, 2015-12, Vol.25 (48), p.7435-7441</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</citedby><cites>FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201504035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201504035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>El-Ballouli, Ala'a O.</creatorcontrib><creatorcontrib>Alarousu, Erkki</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Mohammed, Omar F.</creatorcontrib><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.
The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg < 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</description><subject>charge carrier injection</subject><subject>Charge transfer</subject><subject>Charging</subject><subject>Cut-off</subject><subject>Energy gaps (solid state)</subject><subject>interfacial electrostatic interaction</subject><subject>Photonic band gaps</subject><subject>photovoltaic devices</subject><subject>Porphyrins</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>time-resolved spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEqWwMntkSXHsOHbHktJSKX1Ai-hmOY7dBvIodgL035MSVLEx3TN835HucZxrD_Y8CNGtSHTeQ9Aj0IeYnDgdL_ACF0PETo_ZW587F9a-QuhRiv2Os5h_KCPLPC02oNoqENaVO9cahFthNgqsjCisVgbciSLZiJ0FovrhFvESPNaiqOocDMsKTIpKGS2kunTOtMisuvq9Xed5dL8KH9xoPp6Eg8iVPoTEjaEgNMFUaIwJZSzpByyGDEuYIM0Q1ojEBKGAMkqklL6WTcJJ309ULFDMcNe5aXt3pnyvla14nlqpskwUqqwtb_5jEDUSbdBei0pTWmuU5juT5sLsuQf5YTp-mI4fp2uEfit8ppna_0PzwXA0_eu6rZvaSn0dXWHeeEAxJfxlNubDafQUrf0ZX-JvBXqAog</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>El-Ballouli, Ala'a O.</creator><creator>Alarousu, Erkki</creator><creator>Kirmani, Ahmad R.</creator><creator>Amassian, Aram</creator><creator>Bakr, Osman M.</creator><creator>Mohammed, Omar F.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151222</creationdate><title>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</title><author>El-Ballouli, Ala'a O. ; Alarousu, Erkki ; Kirmani, Ahmad R. ; Amassian, Aram ; Bakr, Osman M. ; Mohammed, Omar F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-b0a57d37af335788d968b083c0d2f823f25b52267875ccc4fc7873d94deba2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>charge carrier injection</topic><topic>Charge transfer</topic><topic>Charging</topic><topic>Cut-off</topic><topic>Energy gaps (solid state)</topic><topic>interfacial electrostatic interaction</topic><topic>Photonic band gaps</topic><topic>photovoltaic devices</topic><topic>Porphyrins</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>time-resolved spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Ballouli, Ala'a O.</creatorcontrib><creatorcontrib>Alarousu, Erkki</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Mohammed, Omar F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Ballouli, Ala'a O.</au><au>Alarousu, Erkki</au><au>Kirmani, Ahmad R.</au><au>Amassian, Aram</au><au>Bakr, Osman M.</au><au>Mohammed, Omar F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>25</volume><issue>48</issue><spage>7435</spage><epage>7441</epage><pages>7435-7441</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD‐based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron‐accepting unit with a new driving force for CT is urgently needed to harvest the light from large‐sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time‐resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD‐based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.
The interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged quantum dots (QDs) surface enables widening the effective bandgap (Eg) range for charge transfer (CT) from PbS QDs. For the first time, the occurance of an effective CT from large PbS QDs (Eg < 1 eV) is shown to positively charged porphyrin, thus overcoming the previously reported cut‐off CT bandgaps at PbS QD interface.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201504035</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2015-12, Vol.25 (48), p.7435-7441 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778027877 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | charge carrier injection Charge transfer Charging Cut-off Energy gaps (solid state) interfacial electrostatic interaction Photonic band gaps photovoltaic devices Porphyrins Quantum dots Semiconductors time-resolved spectroscopy |
title | Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20Cut-Off%20Charge%20Transfer%20Bandgaps%20at%20the%20PbS%20Quantum%20Dot%20Interface&rft.jtitle=Advanced%20functional%20materials&rft.au=El-Ballouli,%20Ala'a%20O.&rft.date=2015-12-22&rft.volume=25&rft.issue=48&rft.spage=7435&rft.epage=7441&rft.pages=7435-7441&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201504035&rft_dat=%3Cproquest_cross%3E1778027877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778027877&rft_id=info:pmid/&rfr_iscdi=true |