Effect of composite surface treatment on heat dissipation of LEDs

A three-layered structure comprising two layers of substrates with an adhesive layer at the center is introduced to improve heat dissipation of light-emitting diodes (LEDs). The adhesive layer is a type of treated composite composed of three components: hexagonal boron nitride (H-BN), epoxy resin (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2016-01, Vol.89, p.597-603
Hauptverfasser: Li, Qiaomei, Gui, Yingang, Mu, Qiwu, Ran, Qing, Liu, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue
container_start_page 597
container_title Materials & design
container_volume 89
creator Li, Qiaomei
Gui, Yingang
Mu, Qiwu
Ran, Qing
Liu, Hui
description A three-layered structure comprising two layers of substrates with an adhesive layer at the center is introduced to improve heat dissipation of light-emitting diodes (LEDs). The adhesive layer is a type of treated composite composed of three components: hexagonal boron nitride (H-BN), epoxy resin (EP), and silane coupling agent. EP can be better positioned as a filler agent by using H-BN, thereby increasing adhesion. Introducing the silane coupling agent builds a heat conducting path from H-BN to EP, which effectively increases the thermal conductivity of the adhesive layer. In addition, the substrate surface treatment acts as an attraction agent and a catalyst that increases the interstitial between the composite and treated substrate surface. When the weight fraction of H-BN is 75%, the thermal conductivity of the treated composites at the center reaches 11.536W·m−1K−1, which is 38.57% higher than that of untreated H-BN/EP composites and 49 times that of EP. The thermal conductivity and adhesion strength of surface-treated three-layered structure are 9.571W·m−1K−1 and 56.60MPa, respectively. Analysis of the thermal stability of the three-layered structure shows that surface-treated structures are more durable than surface-untreated structures. Filler–matrix interface and adhesive–substrate interface of high-power LEDs. [Display omitted] •Water–alcohol–acid method is used to improve surface of H-BN multilayer material.•Thermal conductivity of treated H-BN/EP composites is 49 times that of neat EP.•Surface treated three-layered structure have better durability and higher adhesion strength.
doi_str_mv 10.1016/j.matdes.2015.10.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778027439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264127515306109</els_id><sourcerecordid>1778027439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-33cd884828069a2104c6e8dba4b05fd75cde5f92cdf4e2213d081513b92353fe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMUs3cyY5ySzEUqtDyi40XVIkxtM6TxMUsF_b8q4dnUv555z4H4I3RLcEEza-33Tm-wgNRQTUaQGM3qGFkRJVnPSyXO0wLTlNaFSXKKrlPYYUyoZX6DVxnuwuRp9Zcd-GlPIUKVj9MZClSOY3MNQzkP1WfbKhZTCZHIoQolsN4_pGl14c0hw8zeX6ONp875-qbdvz6_r1ba2jHW5Zsw6pbiiCredoQRz24JyO8N3WHgnhXUgfEet8xwoJcxhRQRhu44ywTywJbqbe6c4fh0hZd2HZOFwMAOMx6SJlApTyVlXrHy22jimFMHrKYbexB9NsD4R03s9E9MnYie1ECuxhzkG5Y3vAFEnG2Cw4EIsjLQbw_8Fv-vwdX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778027439</pqid></control><display><type>article</type><title>Effect of composite surface treatment on heat dissipation of LEDs</title><source>Alma/SFX Local Collection</source><creator>Li, Qiaomei ; Gui, Yingang ; Mu, Qiwu ; Ran, Qing ; Liu, Hui</creator><creatorcontrib>Li, Qiaomei ; Gui, Yingang ; Mu, Qiwu ; Ran, Qing ; Liu, Hui</creatorcontrib><description>A three-layered structure comprising two layers of substrates with an adhesive layer at the center is introduced to improve heat dissipation of light-emitting diodes (LEDs). The adhesive layer is a type of treated composite composed of three components: hexagonal boron nitride (H-BN), epoxy resin (EP), and silane coupling agent. EP can be better positioned as a filler agent by using H-BN, thereby increasing adhesion. Introducing the silane coupling agent builds a heat conducting path from H-BN to EP, which effectively increases the thermal conductivity of the adhesive layer. In addition, the substrate surface treatment acts as an attraction agent and a catalyst that increases the interstitial between the composite and treated substrate surface. When the weight fraction of H-BN is 75%, the thermal conductivity of the treated composites at the center reaches 11.536W·m−1K−1, which is 38.57% higher than that of untreated H-BN/EP composites and 49 times that of EP. The thermal conductivity and adhesion strength of surface-treated three-layered structure are 9.571W·m−1K−1 and 56.60MPa, respectively. Analysis of the thermal stability of the three-layered structure shows that surface-treated structures are more durable than surface-untreated structures. Filler–matrix interface and adhesive–substrate interface of high-power LEDs. [Display omitted] •Water–alcohol–acid method is used to improve surface of H-BN multilayer material.•Thermal conductivity of treated H-BN/EP composites is 49 times that of neat EP.•Surface treated three-layered structure have better durability and higher adhesion strength.</description><identifier>ISSN: 0264-1275</identifier><identifier>EISSN: 1873-4197</identifier><identifier>DOI: 10.1016/j.matdes.2015.10.032</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adhesives ; Composites ; Construction ; Cooling ; Coupling agents ; Heat transfer ; Interfaces ; Particle-reinforcement ; Silanes ; Surface treatment ; Thermal conductivity ; Thermal properties</subject><ispartof>Materials &amp; design, 2016-01, Vol.89, p.597-603</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-33cd884828069a2104c6e8dba4b05fd75cde5f92cdf4e2213d081513b92353fe3</citedby><cites>FETCH-LOGICAL-c339t-33cd884828069a2104c6e8dba4b05fd75cde5f92cdf4e2213d081513b92353fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Li, Qiaomei</creatorcontrib><creatorcontrib>Gui, Yingang</creatorcontrib><creatorcontrib>Mu, Qiwu</creatorcontrib><creatorcontrib>Ran, Qing</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><title>Effect of composite surface treatment on heat dissipation of LEDs</title><title>Materials &amp; design</title><description>A three-layered structure comprising two layers of substrates with an adhesive layer at the center is introduced to improve heat dissipation of light-emitting diodes (LEDs). The adhesive layer is a type of treated composite composed of three components: hexagonal boron nitride (H-BN), epoxy resin (EP), and silane coupling agent. EP can be better positioned as a filler agent by using H-BN, thereby increasing adhesion. Introducing the silane coupling agent builds a heat conducting path from H-BN to EP, which effectively increases the thermal conductivity of the adhesive layer. In addition, the substrate surface treatment acts as an attraction agent and a catalyst that increases the interstitial between the composite and treated substrate surface. When the weight fraction of H-BN is 75%, the thermal conductivity of the treated composites at the center reaches 11.536W·m−1K−1, which is 38.57% higher than that of untreated H-BN/EP composites and 49 times that of EP. The thermal conductivity and adhesion strength of surface-treated three-layered structure are 9.571W·m−1K−1 and 56.60MPa, respectively. Analysis of the thermal stability of the three-layered structure shows that surface-treated structures are more durable than surface-untreated structures. Filler–matrix interface and adhesive–substrate interface of high-power LEDs. [Display omitted] •Water–alcohol–acid method is used to improve surface of H-BN multilayer material.•Thermal conductivity of treated H-BN/EP composites is 49 times that of neat EP.•Surface treated three-layered structure have better durability and higher adhesion strength.</description><subject>Adhesives</subject><subject>Composites</subject><subject>Construction</subject><subject>Cooling</subject><subject>Coupling agents</subject><subject>Heat transfer</subject><subject>Interfaces</subject><subject>Particle-reinforcement</subject><subject>Silanes</subject><subject>Surface treatment</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><issn>0264-1275</issn><issn>1873-4197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMUs3cyY5ySzEUqtDyi40XVIkxtM6TxMUsF_b8q4dnUv555z4H4I3RLcEEza-33Tm-wgNRQTUaQGM3qGFkRJVnPSyXO0wLTlNaFSXKKrlPYYUyoZX6DVxnuwuRp9Zcd-GlPIUKVj9MZClSOY3MNQzkP1WfbKhZTCZHIoQolsN4_pGl14c0hw8zeX6ONp875-qbdvz6_r1ba2jHW5Zsw6pbiiCredoQRz24JyO8N3WHgnhXUgfEet8xwoJcxhRQRhu44ywTywJbqbe6c4fh0hZd2HZOFwMAOMx6SJlApTyVlXrHy22jimFMHrKYbexB9NsD4R03s9E9MnYie1ECuxhzkG5Y3vAFEnG2Cw4EIsjLQbw_8Fv-vwdX4</recordid><startdate>20160105</startdate><enddate>20160105</enddate><creator>Li, Qiaomei</creator><creator>Gui, Yingang</creator><creator>Mu, Qiwu</creator><creator>Ran, Qing</creator><creator>Liu, Hui</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160105</creationdate><title>Effect of composite surface treatment on heat dissipation of LEDs</title><author>Li, Qiaomei ; Gui, Yingang ; Mu, Qiwu ; Ran, Qing ; Liu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-33cd884828069a2104c6e8dba4b05fd75cde5f92cdf4e2213d081513b92353fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adhesives</topic><topic>Composites</topic><topic>Construction</topic><topic>Cooling</topic><topic>Coupling agents</topic><topic>Heat transfer</topic><topic>Interfaces</topic><topic>Particle-reinforcement</topic><topic>Silanes</topic><topic>Surface treatment</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaomei</creatorcontrib><creatorcontrib>Gui, Yingang</creatorcontrib><creatorcontrib>Mu, Qiwu</creatorcontrib><creatorcontrib>Ran, Qing</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaomei</au><au>Gui, Yingang</au><au>Mu, Qiwu</au><au>Ran, Qing</au><au>Liu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of composite surface treatment on heat dissipation of LEDs</atitle><jtitle>Materials &amp; design</jtitle><date>2016-01-05</date><risdate>2016</risdate><volume>89</volume><spage>597</spage><epage>603</epage><pages>597-603</pages><issn>0264-1275</issn><eissn>1873-4197</eissn><abstract>A three-layered structure comprising two layers of substrates with an adhesive layer at the center is introduced to improve heat dissipation of light-emitting diodes (LEDs). The adhesive layer is a type of treated composite composed of three components: hexagonal boron nitride (H-BN), epoxy resin (EP), and silane coupling agent. EP can be better positioned as a filler agent by using H-BN, thereby increasing adhesion. Introducing the silane coupling agent builds a heat conducting path from H-BN to EP, which effectively increases the thermal conductivity of the adhesive layer. In addition, the substrate surface treatment acts as an attraction agent and a catalyst that increases the interstitial between the composite and treated substrate surface. When the weight fraction of H-BN is 75%, the thermal conductivity of the treated composites at the center reaches 11.536W·m−1K−1, which is 38.57% higher than that of untreated H-BN/EP composites and 49 times that of EP. The thermal conductivity and adhesion strength of surface-treated three-layered structure are 9.571W·m−1K−1 and 56.60MPa, respectively. Analysis of the thermal stability of the three-layered structure shows that surface-treated structures are more durable than surface-untreated structures. Filler–matrix interface and adhesive–substrate interface of high-power LEDs. [Display omitted] •Water–alcohol–acid method is used to improve surface of H-BN multilayer material.•Thermal conductivity of treated H-BN/EP composites is 49 times that of neat EP.•Surface treated three-layered structure have better durability and higher adhesion strength.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2015.10.032</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-1275
ispartof Materials & design, 2016-01, Vol.89, p.597-603
issn 0264-1275
1873-4197
language eng
recordid cdi_proquest_miscellaneous_1778027439
source Alma/SFX Local Collection
subjects Adhesives
Composites
Construction
Cooling
Coupling agents
Heat transfer
Interfaces
Particle-reinforcement
Silanes
Surface treatment
Thermal conductivity
Thermal properties
title Effect of composite surface treatment on heat dissipation of LEDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20composite%20surface%20treatment%20on%20heat%20dissipation%20of%20LEDs&rft.jtitle=Materials%20&%20design&rft.au=Li,%20Qiaomei&rft.date=2016-01-05&rft.volume=89&rft.spage=597&rft.epage=603&rft.pages=597-603&rft.issn=0264-1275&rft.eissn=1873-4197&rft_id=info:doi/10.1016/j.matdes.2015.10.032&rft_dat=%3Cproquest_cross%3E1778027439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778027439&rft_id=info:pmid/&rft_els_id=S0264127515306109&rfr_iscdi=true