Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires

In this work, nonlinear dynamic analysis of a cylindrical sandwich panel with embedded SMA wires in the face sheets is performed taking into account the instantaneous and spatial martensite phase transformation. The Boyd and Lagoudas one-dimensional SMA constitutive equation is used to model the pse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace science and technology 2015-12, Vol.47, p.98-113
Hauptverfasser: Khanjani, M., Shakeri, M., Sedighi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue
container_start_page 98
container_title Aerospace science and technology
container_volume 47
creator Khanjani, M.
Shakeri, M.
Sedighi, M.
description In this work, nonlinear dynamic analysis of a cylindrical sandwich panel with embedded SMA wires in the face sheets is performed taking into account the instantaneous and spatial martensite phase transformation. The Boyd and Lagoudas one-dimensional SMA constitutive equation is used to model the pseudoelastic behavior of the shape memory alloy wires. Since the martensite volume fraction depends on the stress distribution, the governing equations and the phase transformation kinetic equations are coupled together and therefore an iterative method is employed to solve the highly nonlinear equations. Moreover, considering that the stress resultants generated by the martensite phase transformation in the wires are path dependent values, an incremental method is used to estimate the increment of the stress resultants at each time step. A new finite-element-based procedure is proposed and Newmark time integration method is used to solve the finite element equations. The results show a gradual decrease in the amplitude of vibration as long as the SMA wires do not reach a fully elastic condition. This feature is of great interest for the vibration suppression of structures especially that which is related to resonance phenomena. Finally, the effect of various parameters such sector angle, operating temperature, wire volume fraction, through the thickness location of the wires and different boundary conditions on the vibration amplitude and loss factor is investigated.
doi_str_mv 10.1016/j.ast.2015.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778026364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963815002746</els_id><sourcerecordid>1778026364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-d69ca46ab3ebfd399b7fbef3d02cecfac767a58b8467630fdecdf1d4088342753</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwA-hc0tzhx8U-iyqKeEkBCqC2fPaaOLpHsC9E-fc4CjXVrkYzq50PoWtKSkqouF2XJo0lI3RWElVm5QRNqGCi4Iyq07wzSQoleH2OLlJaE0KYqtgE-dehL9rQg4l4jKZPAfoRm95hZ7pN6L_ybtp9CgkPHhvcDlmy-5xwMVjT4pS9u2BXeGN6aPEujCsMXQPOgcPvL_OsREiX6MybNsHV35yiz4f7j8VTsXx7fF7Ml4XlnIyFE8qaSpiGQ-MdV6qRvgHPHWEWrDdWCmlmdVNXQgpOvAPrPHUVqWteMTnjU3RzvLuJw_cW0qi7kCy0bX5u2CZNpawJE1xU2UqPVhuHlCJ4vYmhM3GvKdEHpnqtM1N9YKqJ0lnJmbtjBnKHnwBRJ5uBWXC5pB21G8I_6V_C8YEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778026364</pqid></control><display><type>article</type><title>Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Khanjani, M. ; Shakeri, M. ; Sedighi, M.</creator><creatorcontrib>Khanjani, M. ; Shakeri, M. ; Sedighi, M.</creatorcontrib><description>In this work, nonlinear dynamic analysis of a cylindrical sandwich panel with embedded SMA wires in the face sheets is performed taking into account the instantaneous and spatial martensite phase transformation. The Boyd and Lagoudas one-dimensional SMA constitutive equation is used to model the pseudoelastic behavior of the shape memory alloy wires. Since the martensite volume fraction depends on the stress distribution, the governing equations and the phase transformation kinetic equations are coupled together and therefore an iterative method is employed to solve the highly nonlinear equations. Moreover, considering that the stress resultants generated by the martensite phase transformation in the wires are path dependent values, an incremental method is used to estimate the increment of the stress resultants at each time step. A new finite-element-based procedure is proposed and Newmark time integration method is used to solve the finite element equations. The results show a gradual decrease in the amplitude of vibration as long as the SMA wires do not reach a fully elastic condition. This feature is of great interest for the vibration suppression of structures especially that which is related to resonance phenomena. Finally, the effect of various parameters such sector angle, operating temperature, wire volume fraction, through the thickness location of the wires and different boundary conditions on the vibration amplitude and loss factor is investigated.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2015.09.016</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Cylindrical sandwich panels ; High-order theory ; Martensite ; Martensitic transformations ; Mathematical analysis ; Mathematical models ; Non-linear transient and damping analysis ; Sandwich construction ; Shape memory alloys ; Vibration ; Wire</subject><ispartof>Aerospace science and technology, 2015-12, Vol.47, p.98-113</ispartof><rights>2015 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-d69ca46ab3ebfd399b7fbef3d02cecfac767a58b8467630fdecdf1d4088342753</citedby><cites>FETCH-LOGICAL-c330t-d69ca46ab3ebfd399b7fbef3d02cecfac767a58b8467630fdecdf1d4088342753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ast.2015.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Khanjani, M.</creatorcontrib><creatorcontrib>Shakeri, M.</creatorcontrib><creatorcontrib>Sedighi, M.</creatorcontrib><title>Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires</title><title>Aerospace science and technology</title><description>In this work, nonlinear dynamic analysis of a cylindrical sandwich panel with embedded SMA wires in the face sheets is performed taking into account the instantaneous and spatial martensite phase transformation. The Boyd and Lagoudas one-dimensional SMA constitutive equation is used to model the pseudoelastic behavior of the shape memory alloy wires. Since the martensite volume fraction depends on the stress distribution, the governing equations and the phase transformation kinetic equations are coupled together and therefore an iterative method is employed to solve the highly nonlinear equations. Moreover, considering that the stress resultants generated by the martensite phase transformation in the wires are path dependent values, an incremental method is used to estimate the increment of the stress resultants at each time step. A new finite-element-based procedure is proposed and Newmark time integration method is used to solve the finite element equations. The results show a gradual decrease in the amplitude of vibration as long as the SMA wires do not reach a fully elastic condition. This feature is of great interest for the vibration suppression of structures especially that which is related to resonance phenomena. Finally, the effect of various parameters such sector angle, operating temperature, wire volume fraction, through the thickness location of the wires and different boundary conditions on the vibration amplitude and loss factor is investigated.</description><subject>Cylindrical sandwich panels</subject><subject>High-order theory</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-linear transient and damping analysis</subject><subject>Sandwich construction</subject><subject>Shape memory alloys</subject><subject>Vibration</subject><subject>Wire</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHwA-hc0tzhx8U-iyqKeEkBCqC2fPaaOLpHsC9E-fc4CjXVrkYzq50PoWtKSkqouF2XJo0lI3RWElVm5QRNqGCi4Iyq07wzSQoleH2OLlJaE0KYqtgE-dehL9rQg4l4jKZPAfoRm95hZ7pN6L_ybtp9CgkPHhvcDlmy-5xwMVjT4pS9u2BXeGN6aPEujCsMXQPOgcPvL_OsREiX6MybNsHV35yiz4f7j8VTsXx7fF7Ml4XlnIyFE8qaSpiGQ-MdV6qRvgHPHWEWrDdWCmlmdVNXQgpOvAPrPHUVqWteMTnjU3RzvLuJw_cW0qi7kCy0bX5u2CZNpawJE1xU2UqPVhuHlCJ4vYmhM3GvKdEHpnqtM1N9YKqJ0lnJmbtjBnKHnwBRJ5uBWXC5pB21G8I_6V_C8YEA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Khanjani, M.</creator><creator>Shakeri, M.</creator><creator>Sedighi, M.</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires</title><author>Khanjani, M. ; Shakeri, M. ; Sedighi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-d69ca46ab3ebfd399b7fbef3d02cecfac767a58b8467630fdecdf1d4088342753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cylindrical sandwich panels</topic><topic>High-order theory</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-linear transient and damping analysis</topic><topic>Sandwich construction</topic><topic>Shape memory alloys</topic><topic>Vibration</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanjani, M.</creatorcontrib><creatorcontrib>Shakeri, M.</creatorcontrib><creatorcontrib>Sedighi, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanjani, M.</au><au>Shakeri, M.</au><au>Sedighi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires</atitle><jtitle>Aerospace science and technology</jtitle><date>2015-12</date><risdate>2015</risdate><volume>47</volume><spage>98</spage><epage>113</epage><pages>98-113</pages><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>In this work, nonlinear dynamic analysis of a cylindrical sandwich panel with embedded SMA wires in the face sheets is performed taking into account the instantaneous and spatial martensite phase transformation. The Boyd and Lagoudas one-dimensional SMA constitutive equation is used to model the pseudoelastic behavior of the shape memory alloy wires. Since the martensite volume fraction depends on the stress distribution, the governing equations and the phase transformation kinetic equations are coupled together and therefore an iterative method is employed to solve the highly nonlinear equations. Moreover, considering that the stress resultants generated by the martensite phase transformation in the wires are path dependent values, an incremental method is used to estimate the increment of the stress resultants at each time step. A new finite-element-based procedure is proposed and Newmark time integration method is used to solve the finite element equations. The results show a gradual decrease in the amplitude of vibration as long as the SMA wires do not reach a fully elastic condition. This feature is of great interest for the vibration suppression of structures especially that which is related to resonance phenomena. Finally, the effect of various parameters such sector angle, operating temperature, wire volume fraction, through the thickness location of the wires and different boundary conditions on the vibration amplitude and loss factor is investigated.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2015.09.016</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2015-12, Vol.47, p.98-113
issn 1270-9638
1626-3219
language eng
recordid cdi_proquest_miscellaneous_1778026364
source ScienceDirect Journals (5 years ago - present)
subjects Cylindrical sandwich panels
High-order theory
Martensite
Martensitic transformations
Mathematical analysis
Mathematical models
Non-linear transient and damping analysis
Sandwich construction
Shape memory alloys
Vibration
Wire
title Non-linear transient and damping analysis of a long cylindrical sandwich panel with embedded SMA wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20transient%20and%20damping%20analysis%20of%20a%20long%20cylindrical%20sandwich%20panel%20with%20embedded%20SMA%20wires&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Khanjani,%20M.&rft.date=2015-12&rft.volume=47&rft.spage=98&rft.epage=113&rft.pages=98-113&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2015.09.016&rft_dat=%3Cproquest_cross%3E1778026364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778026364&rft_id=info:pmid/&rft_els_id=S1270963815002746&rfr_iscdi=true