Evolution of dislocation density distributions in copper during tensile deformation

The evolution of dislocation storage in deformed copper was studied with cross-correlation-based high-resolution electron backscatter diffraction. Maps of 500μm×500μm areas with 0.5μm step size were collected and analysed for samples deformed in tension to 0%, 6%, 10%, 22.5% and 40% plastic strain....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2013-11, Vol.61 (19), p.7227-7239
Hauptverfasser: Jiang, J., Britton, T.B., Wilkinson, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7239
container_issue 19
container_start_page 7227
container_title Acta materialia
container_volume 61
creator Jiang, J.
Britton, T.B.
Wilkinson, A.J.
description The evolution of dislocation storage in deformed copper was studied with cross-correlation-based high-resolution electron backscatter diffraction. Maps of 500μm×500μm areas with 0.5μm step size were collected and analysed for samples deformed in tension to 0%, 6%, 10%, 22.5% and 40% plastic strain. These maps cover ∼1500 grains each while also containing very good resolution of the geometrically necessary dislocation (GND) content. We find that the average GND density increases with imposed macroscopic strain in accord with Ashby’s theory of work hardening. The dislocation density distributions can be described well with a log-normal function. These data sets are very rich and provide ample data such that quantitative statistical analysis can also be performed to assess the impact of grain morphology and local crystallography on the storage of dislocations and resultant deformation patterning. Higher GND densities accumulate near grain boundaries and triple junctions as anticipated by Ashby’s theory, while lower densities are rather more spread through the material. At lower strains (⩽6%) the grain-averaged GND density was higher in smaller grains, showing a good correlation with the reciprocal of the grain size. When combined with a Taylor hardening model this last observation is consistent with the Hall–Petch grain size effect for the yield or flow stress.
doi_str_mv 10.1016/j.actamat.2013.08.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541300623X</els_id><sourcerecordid>1778021942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2c361c556d1e0aebc81bd3d08cefd2fdbbec711df2cd6848a3ae64b16f5c54803</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWKs_QchGcJM4ryTTlUipDyi4UNfD5M4dmZJm6sy00H9v0ha3ru6D79zDPVl2S0lJCa0fVqWGpNc6lYxQXhJZEtacZRMqG14wUfHzoefVrKhFJS6zqxhXhFDWCDLJPhY7322T833ubW5c7Dzow2iwjy7tx10Krj0wMXd9Dn6zwZCbbXD9d55GrMMBtz6sD9Lr7MLqLuLNqU6zr-fF5_y1WL6_vM2flgUIOksFA15TqKraUCQaW5C0NdwQCWgNs6ZtERpKjWVgaimk5hpr0dLaVlAJSfg0uz_e3QT_s8WY1NpFwK7TPfptVLRpJGF0JtiAVkcUgo8xoFWb4NY67BUlagxRrdQpRDWGqIhUQ4iD7u5koSPozgbdg4t_YtZITurZeP_xyOHw785hUBEc9oDGBYSkjHf_OP0CkwSNLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778021942</pqid></control><display><type>article</type><title>Evolution of dislocation density distributions in copper during tensile deformation</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, J. ; Britton, T.B. ; Wilkinson, A.J.</creator><creatorcontrib>Jiang, J. ; Britton, T.B. ; Wilkinson, A.J.</creatorcontrib><description>The evolution of dislocation storage in deformed copper was studied with cross-correlation-based high-resolution electron backscatter diffraction. Maps of 500μm×500μm areas with 0.5μm step size were collected and analysed for samples deformed in tension to 0%, 6%, 10%, 22.5% and 40% plastic strain. These maps cover ∼1500 grains each while also containing very good resolution of the geometrically necessary dislocation (GND) content. We find that the average GND density increases with imposed macroscopic strain in accord with Ashby’s theory of work hardening. The dislocation density distributions can be described well with a log-normal function. These data sets are very rich and provide ample data such that quantitative statistical analysis can also be performed to assess the impact of grain morphology and local crystallography on the storage of dislocations and resultant deformation patterning. Higher GND densities accumulate near grain boundaries and triple junctions as anticipated by Ashby’s theory, while lower densities are rather more spread through the material. At lower strains (⩽6%) the grain-averaged GND density was higher in smaller grains, showing a good correlation with the reciprocal of the grain size. When combined with a Taylor hardening model this last observation is consistent with the Hall–Petch grain size effect for the yield or flow stress.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2013.08.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Copper ; Deformation ; Density ; Dislocations ; EBSD ; Evolution ; Exact sciences and technology ; Geometrically necessary dislocations (GNDs) ; Grains ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Plastic deformation ; Polycrystals ; Statistical analysis ; Strain</subject><ispartof>Acta materialia, 2013-11, Vol.61 (19), p.7227-7239</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2c361c556d1e0aebc81bd3d08cefd2fdbbec711df2cd6848a3ae64b16f5c54803</citedby><cites>FETCH-LOGICAL-c419t-2c361c556d1e0aebc81bd3d08cefd2fdbbec711df2cd6848a3ae64b16f5c54803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541300623X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27830692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Britton, T.B.</creatorcontrib><creatorcontrib>Wilkinson, A.J.</creatorcontrib><title>Evolution of dislocation density distributions in copper during tensile deformation</title><title>Acta materialia</title><description>The evolution of dislocation storage in deformed copper was studied with cross-correlation-based high-resolution electron backscatter diffraction. Maps of 500μm×500μm areas with 0.5μm step size were collected and analysed for samples deformed in tension to 0%, 6%, 10%, 22.5% and 40% plastic strain. These maps cover ∼1500 grains each while also containing very good resolution of the geometrically necessary dislocation (GND) content. We find that the average GND density increases with imposed macroscopic strain in accord with Ashby’s theory of work hardening. The dislocation density distributions can be described well with a log-normal function. These data sets are very rich and provide ample data such that quantitative statistical analysis can also be performed to assess the impact of grain morphology and local crystallography on the storage of dislocations and resultant deformation patterning. Higher GND densities accumulate near grain boundaries and triple junctions as anticipated by Ashby’s theory, while lower densities are rather more spread through the material. At lower strains (⩽6%) the grain-averaged GND density was higher in smaller grains, showing a good correlation with the reciprocal of the grain size. When combined with a Taylor hardening model this last observation is consistent with the Hall–Petch grain size effect for the yield or flow stress.</description><subject>Applied sciences</subject><subject>Copper</subject><subject>Deformation</subject><subject>Density</subject><subject>Dislocations</subject><subject>EBSD</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Geometrically necessary dislocations (GNDs)</subject><subject>Grains</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Plastic deformation</subject><subject>Polycrystals</subject><subject>Statistical analysis</subject><subject>Strain</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhYMoWKs_QchGcJM4ryTTlUipDyi4UNfD5M4dmZJm6sy00H9v0ha3ru6D79zDPVl2S0lJCa0fVqWGpNc6lYxQXhJZEtacZRMqG14wUfHzoefVrKhFJS6zqxhXhFDWCDLJPhY7322T833ubW5c7Dzow2iwjy7tx10Krj0wMXd9Dn6zwZCbbXD9d55GrMMBtz6sD9Lr7MLqLuLNqU6zr-fF5_y1WL6_vM2flgUIOksFA15TqKraUCQaW5C0NdwQCWgNs6ZtERpKjWVgaimk5hpr0dLaVlAJSfg0uz_e3QT_s8WY1NpFwK7TPfptVLRpJGF0JtiAVkcUgo8xoFWb4NY67BUlagxRrdQpRDWGqIhUQ4iD7u5koSPozgbdg4t_YtZITurZeP_xyOHw785hUBEc9oDGBYSkjHf_OP0CkwSNLQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Jiang, J.</creator><creator>Britton, T.B.</creator><creator>Wilkinson, A.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131101</creationdate><title>Evolution of dislocation density distributions in copper during tensile deformation</title><author>Jiang, J. ; Britton, T.B. ; Wilkinson, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2c361c556d1e0aebc81bd3d08cefd2fdbbec711df2cd6848a3ae64b16f5c54803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Copper</topic><topic>Deformation</topic><topic>Density</topic><topic>Dislocations</topic><topic>EBSD</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Geometrically necessary dislocations (GNDs)</topic><topic>Grains</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Plastic deformation</topic><topic>Polycrystals</topic><topic>Statistical analysis</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Britton, T.B.</creatorcontrib><creatorcontrib>Wilkinson, A.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, J.</au><au>Britton, T.B.</au><au>Wilkinson, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of dislocation density distributions in copper during tensile deformation</atitle><jtitle>Acta materialia</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>61</volume><issue>19</issue><spage>7227</spage><epage>7239</epage><pages>7227-7239</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The evolution of dislocation storage in deformed copper was studied with cross-correlation-based high-resolution electron backscatter diffraction. Maps of 500μm×500μm areas with 0.5μm step size were collected and analysed for samples deformed in tension to 0%, 6%, 10%, 22.5% and 40% plastic strain. These maps cover ∼1500 grains each while also containing very good resolution of the geometrically necessary dislocation (GND) content. We find that the average GND density increases with imposed macroscopic strain in accord with Ashby’s theory of work hardening. The dislocation density distributions can be described well with a log-normal function. These data sets are very rich and provide ample data such that quantitative statistical analysis can also be performed to assess the impact of grain morphology and local crystallography on the storage of dislocations and resultant deformation patterning. Higher GND densities accumulate near grain boundaries and triple junctions as anticipated by Ashby’s theory, while lower densities are rather more spread through the material. At lower strains (⩽6%) the grain-averaged GND density was higher in smaller grains, showing a good correlation with the reciprocal of the grain size. When combined with a Taylor hardening model this last observation is consistent with the Hall–Petch grain size effect for the yield or flow stress.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2013.08.027</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2013-11, Vol.61 (19), p.7227-7239
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1778021942
source Elsevier ScienceDirect Journals
subjects Applied sciences
Copper
Deformation
Density
Dislocations
EBSD
Evolution
Exact sciences and technology
Geometrically necessary dislocations (GNDs)
Grains
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Plastic deformation
Polycrystals
Statistical analysis
Strain
title Evolution of dislocation density distributions in copper during tensile deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20dislocation%20density%20distributions%20in%20copper%20during%20tensile%20deformation&rft.jtitle=Acta%20materialia&rft.au=Jiang,%20J.&rft.date=2013-11-01&rft.volume=61&rft.issue=19&rft.spage=7227&rft.epage=7239&rft.pages=7227-7239&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2013.08.027&rft_dat=%3Cproquest_cross%3E1778021942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778021942&rft_id=info:pmid/&rft_els_id=S135964541300623X&rfr_iscdi=true