An effective inversion strategy for fractal–multifractal encoding of a storm in Boston

•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2013-07, Vol.496, p.205-216
Hauptverfasser: Huang, Huai-Hsien, Puente, Carlos E., Cortis, Andrea, Fernández Martínez, Juan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 205
container_title Journal of hydrology (Amsterdam)
container_volume 496
creator Huang, Huai-Hsien
Puente, Carlos E.
Cortis, Andrea
Fernández Martínez, Juan L.
description •We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios. Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.
doi_str_mv 10.1016/j.jhydrol.2013.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216941300382X</els_id><sourcerecordid>1746890057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhkVJoY6bRyjoEshlNxpptdKeQhLSNhDoJYXchKwduTLrlSutDb71HfKGfZLK2PSa6CLN8P0z8ImQL8BqYNBer-rVr32f4lBzBqJmsmYgP5AZaNVVXDF1RmaMcV5B2zWfyHnOK1aOEM2MvNyOFL1HN4Ud0jDuMOUQR5qnZCdc7qmPifpk3WSHv39e19thCqeS4uhiH8YljZ7akohpXSbQu1ie42fy0dsh48XpnpOfXx-e779XTz--Pd7fPlW24Xqq3ELwxaLtfY-M6w64sBqt18CZaxRAaSzANp21ynOOsi0d1OCFlMqB5mJOro5zNyn-3mKezDpkh8NgR4zbbEApzTiITr0DbVrdMSYPqDyiLsWcE3qzSWFt094AMwfpZmVO0s1BumHSFOkld3laYbOzQzE1upD_h7mSXGh54G6OHBY1u4DJZBeKT-xDKn9h-hje2PQPWBmbVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746890057</pqid></control><display><type>article</type><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</creator><creatorcontrib>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</creatorcontrib><description>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios. Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2013.05.015</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Earth sciences ; Earth, ocean, space ; Encoding ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fractal ; Fractal–multifractal approach ; Hydrology ; Hydrology. Hydrogeology ; Inverse problem ; Multifractals ; Natural hazards: prediction, damages, etc ; Particle swarm optimization ; Rainfall in time ; Storms ; Strategy ; Surface layer ; Swarm intelligence ; Texture</subject><ispartof>Journal of hydrology (Amsterdam), 2013-07, Vol.496, p.205-216</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</citedby><cites>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2013.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27523855$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huai-Hsien</creatorcontrib><creatorcontrib>Puente, Carlos E.</creatorcontrib><creatorcontrib>Cortis, Andrea</creatorcontrib><creatorcontrib>Fernández Martínez, Juan L.</creatorcontrib><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><title>Journal of hydrology (Amsterdam)</title><description>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios. Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Encoding</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fractal</subject><subject>Fractal–multifractal approach</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Inverse problem</subject><subject>Multifractals</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Particle swarm optimization</subject><subject>Rainfall in time</subject><subject>Storms</subject><subject>Strategy</subject><subject>Surface layer</subject><subject>Swarm intelligence</subject><subject>Texture</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkcFqGzEQhkVJoY6bRyjoEshlNxpptdKeQhLSNhDoJYXchKwduTLrlSutDb71HfKGfZLK2PSa6CLN8P0z8ImQL8BqYNBer-rVr32f4lBzBqJmsmYgP5AZaNVVXDF1RmaMcV5B2zWfyHnOK1aOEM2MvNyOFL1HN4Ud0jDuMOUQR5qnZCdc7qmPifpk3WSHv39e19thCqeS4uhiH8YljZ7akohpXSbQu1ie42fy0dsh48XpnpOfXx-e779XTz--Pd7fPlW24Xqq3ELwxaLtfY-M6w64sBqt18CZaxRAaSzANp21ynOOsi0d1OCFlMqB5mJOro5zNyn-3mKezDpkh8NgR4zbbEApzTiITr0DbVrdMSYPqDyiLsWcE3qzSWFt094AMwfpZmVO0s1BumHSFOkld3laYbOzQzE1upD_h7mSXGh54G6OHBY1u4DJZBeKT-xDKn9h-hje2PQPWBmbVA</recordid><startdate>20130724</startdate><enddate>20130724</enddate><creator>Huang, Huai-Hsien</creator><creator>Puente, Carlos E.</creator><creator>Cortis, Andrea</creator><creator>Fernández Martínez, Juan L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130724</creationdate><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><author>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Encoding</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fractal</topic><topic>Fractal–multifractal approach</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Inverse problem</topic><topic>Multifractals</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Particle swarm optimization</topic><topic>Rainfall in time</topic><topic>Storms</topic><topic>Strategy</topic><topic>Surface layer</topic><topic>Swarm intelligence</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huai-Hsien</creatorcontrib><creatorcontrib>Puente, Carlos E.</creatorcontrib><creatorcontrib>Cortis, Andrea</creatorcontrib><creatorcontrib>Fernández Martínez, Juan L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huai-Hsien</au><au>Puente, Carlos E.</au><au>Cortis, Andrea</au><au>Fernández Martínez, Juan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2013-07-24</date><risdate>2013</risdate><volume>496</volume><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios. Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2013.05.015</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2013-07, Vol.496, p.205-216
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_1778021397
source Access via ScienceDirect (Elsevier)
subjects Earth sciences
Earth, ocean, space
Encoding
Engineering and environment geology. Geothermics
Exact sciences and technology
Fractal
Fractal–multifractal approach
Hydrology
Hydrology. Hydrogeology
Inverse problem
Multifractals
Natural hazards: prediction, damages, etc
Particle swarm optimization
Rainfall in time
Storms
Strategy
Surface layer
Swarm intelligence
Texture
title An effective inversion strategy for fractal–multifractal encoding of a storm in Boston
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20inversion%20strategy%20for%20fractal%E2%80%93multifractal%20encoding%20of%20a%20storm%20in%20Boston&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Huang,%20Huai-Hsien&rft.date=2013-07-24&rft.volume=496&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2013.05.015&rft_dat=%3Cproquest_cross%3E1746890057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746890057&rft_id=info:pmid/&rft_els_id=S002216941300382X&rfr_iscdi=true