An effective inversion strategy for fractal–multifractal encoding of a storm in Boston
•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compres...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2013-07, Vol.496, p.205-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | |
container_start_page | 205 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 496 |
creator | Huang, Huai-Hsien Puente, Carlos E. Cortis, Andrea Fernández Martínez, Juan L. |
description | •We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios.
Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm. |
doi_str_mv | 10.1016/j.jhydrol.2013.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216941300382X</els_id><sourcerecordid>1746890057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhkVJoY6bRyjoEshlNxpptdKeQhLSNhDoJYXchKwduTLrlSutDb71HfKGfZLK2PSa6CLN8P0z8ImQL8BqYNBer-rVr32f4lBzBqJmsmYgP5AZaNVVXDF1RmaMcV5B2zWfyHnOK1aOEM2MvNyOFL1HN4Ud0jDuMOUQR5qnZCdc7qmPifpk3WSHv39e19thCqeS4uhiH8YljZ7akohpXSbQu1ie42fy0dsh48XpnpOfXx-e779XTz--Pd7fPlW24Xqq3ELwxaLtfY-M6w64sBqt18CZaxRAaSzANp21ynOOsi0d1OCFlMqB5mJOro5zNyn-3mKezDpkh8NgR4zbbEApzTiITr0DbVrdMSYPqDyiLsWcE3qzSWFt094AMwfpZmVO0s1BumHSFOkld3laYbOzQzE1upD_h7mSXGh54G6OHBY1u4DJZBeKT-xDKn9h-hje2PQPWBmbVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746890057</pqid></control><display><type>article</type><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</creator><creatorcontrib>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</creatorcontrib><description>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios.
Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2013.05.015</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Earth sciences ; Earth, ocean, space ; Encoding ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fractal ; Fractal–multifractal approach ; Hydrology ; Hydrology. Hydrogeology ; Inverse problem ; Multifractals ; Natural hazards: prediction, damages, etc ; Particle swarm optimization ; Rainfall in time ; Storms ; Strategy ; Surface layer ; Swarm intelligence ; Texture</subject><ispartof>Journal of hydrology (Amsterdam), 2013-07, Vol.496, p.205-216</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</citedby><cites>FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2013.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27523855$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huai-Hsien</creatorcontrib><creatorcontrib>Puente, Carlos E.</creatorcontrib><creatorcontrib>Cortis, Andrea</creatorcontrib><creatorcontrib>Fernández Martínez, Juan L.</creatorcontrib><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><title>Journal of hydrology (Amsterdam)</title><description>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios.
Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Encoding</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fractal</subject><subject>Fractal–multifractal approach</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Inverse problem</subject><subject>Multifractals</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Particle swarm optimization</subject><subject>Rainfall in time</subject><subject>Storms</subject><subject>Strategy</subject><subject>Surface layer</subject><subject>Swarm intelligence</subject><subject>Texture</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkcFqGzEQhkVJoY6bRyjoEshlNxpptdKeQhLSNhDoJYXchKwduTLrlSutDb71HfKGfZLK2PSa6CLN8P0z8ImQL8BqYNBer-rVr32f4lBzBqJmsmYgP5AZaNVVXDF1RmaMcV5B2zWfyHnOK1aOEM2MvNyOFL1HN4Ud0jDuMOUQR5qnZCdc7qmPifpk3WSHv39e19thCqeS4uhiH8YljZ7akohpXSbQu1ie42fy0dsh48XpnpOfXx-e779XTz--Pd7fPlW24Xqq3ELwxaLtfY-M6w64sBqt18CZaxRAaSzANp21ynOOsi0d1OCFlMqB5mJOro5zNyn-3mKezDpkh8NgR4zbbEApzTiITr0DbVrdMSYPqDyiLsWcE3qzSWFt094AMwfpZmVO0s1BumHSFOkld3laYbOzQzE1upD_h7mSXGh54G6OHBY1u4DJZBeKT-xDKn9h-hje2PQPWBmbVA</recordid><startdate>20130724</startdate><enddate>20130724</enddate><creator>Huang, Huai-Hsien</creator><creator>Puente, Carlos E.</creator><creator>Cortis, Andrea</creator><creator>Fernández Martínez, Juan L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130724</creationdate><title>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</title><author>Huang, Huai-Hsien ; Puente, Carlos E. ; Cortis, Andrea ; Fernández Martínez, Juan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-cb32bb6dfde0289123a8eaf8120c4711123b1a49aa7f22e56112e81f3557c1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Encoding</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fractal</topic><topic>Fractal–multifractal approach</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Inverse problem</topic><topic>Multifractals</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Particle swarm optimization</topic><topic>Rainfall in time</topic><topic>Storms</topic><topic>Strategy</topic><topic>Surface layer</topic><topic>Swarm intelligence</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huai-Hsien</creatorcontrib><creatorcontrib>Puente, Carlos E.</creatorcontrib><creatorcontrib>Cortis, Andrea</creatorcontrib><creatorcontrib>Fernández Martínez, Juan L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huai-Hsien</au><au>Puente, Carlos E.</au><au>Cortis, Andrea</au><au>Fernández Martínez, Juan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective inversion strategy for fractal–multifractal encoding of a storm in Boston</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2013-07-24</date><risdate>2013</risdate><volume>496</volume><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•We remodel a detailed storm in Boston using variants of Fractal–Multifractal (FM) Approach.•We introduce a search procedure for FM based on a generalized particle swarm method.•Exhibit excellent deterministic fits for the storm at various resolutions.•Explain how the fits lead to impressive compression ratios.
Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult to represent as a whole using classical stochastic methods. In recent years, we have developed variants of a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key statistical properties of natural records but also the fine details and textures present on individual data sets. This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumulative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered, for all practical purposes, faithful and parsimonious deterministic representations of the storm.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2013.05.015</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2013-07, Vol.496, p.205-216 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778021397 |
source | Access via ScienceDirect (Elsevier) |
subjects | Earth sciences Earth, ocean, space Encoding Engineering and environment geology. Geothermics Exact sciences and technology Fractal Fractal–multifractal approach Hydrology Hydrology. Hydrogeology Inverse problem Multifractals Natural hazards: prediction, damages, etc Particle swarm optimization Rainfall in time Storms Strategy Surface layer Swarm intelligence Texture |
title | An effective inversion strategy for fractal–multifractal encoding of a storm in Boston |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20inversion%20strategy%20for%20fractal%E2%80%93multifractal%20encoding%20of%20a%20storm%20in%20Boston&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Huang,%20Huai-Hsien&rft.date=2013-07-24&rft.volume=496&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2013.05.015&rft_dat=%3Cproquest_cross%3E1746890057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746890057&rft_id=info:pmid/&rft_els_id=S002216941300382X&rfr_iscdi=true |