Artificial Allosteric Receptors

Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2013-05, Vol.19 (20), p.6162-6196
Hauptverfasser: Kremer, Christopher, Lützen, Arne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6196
container_issue 20
container_start_page 6162
container_title Chemistry : a European journal
container_volume 19
creator Kremer, Christopher
Lützen, Arne
description Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes in cellular metabolism. Inspired by this a lot of efforts have been made in supramolecular chemistry to implement this concept into artificial systems to control functions as molecular recognition, signal amplification, or even reactivity and catalysis. This review gives an up‐to‐date overview over the different approaches that have been reported ever since the first examples from the late 1970s/early 1980s. It covers both homo‐ and heterotropic examples and is divided according to the nature of the effector—cationic, anionic, or neutral—effectors and systems that use combinations of those. Widely used: In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes. Inspired by this, a lot of effort has been made in supramolecular chemistry over the last 30 years to implement this concept into artificial systems to control functions such as molecular recognition, signal amplification, or even reactivity and catalysis, which are summarized here.
doi_str_mv 10.1002/chem.201203814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778020172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778020172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5474-5badabc8c0d288d0bcd1cac1fe025318ce13fd67ebc0e37a44abddf6bd867cd13</originalsourceid><addsrcrecordid>eNqF0c1PwjAYBvDGaATRq0cl8eJl-LZdPzgSgmBETYxiwqXp2i4ON4btiPLfOwIS44VTL7_nSd6nCJ1j6GAAcmPeXdEhgAlQieMD1MSM4IgKzg5RE7qxiDij3QY6CWEGAF1O6TFqEBpzKoA10WXPV1mamUzn7V6el6FyPjPtZ2fcoip9OEVHqc6DO9u-LfR6O3jpj6Lx0_Cu3xtHhsUijliirU6MNGCJlBYSY7HRBqcOCKNYGodparlwiQFHhY5jnVib8sRKLmpLW-h607vw5efShUoVWTAuz_XclcugsBAS6jsF2U9pLBlQAFHTq390Vi79vD5krQSTAJLWqrNRxpcheJeqhc8K7VcKg1qvrNYrq93KdeBiW7tMCmd3_HfWGnQ34CvL3WpPneqPBg9_y6NNNqv_4nuX1f5DcUEFU2-PQzWZDqcT6BN1T38A07GWsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347580083</pqid></control><display><type>article</type><title>Artificial Allosteric Receptors</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Kremer, Christopher ; Lützen, Arne</creator><creatorcontrib>Kremer, Christopher ; Lützen, Arne</creatorcontrib><description>Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes in cellular metabolism. Inspired by this a lot of efforts have been made in supramolecular chemistry to implement this concept into artificial systems to control functions as molecular recognition, signal amplification, or even reactivity and catalysis. This review gives an up‐to‐date overview over the different approaches that have been reported ever since the first examples from the late 1970s/early 1980s. It covers both homo‐ and heterotropic examples and is divided according to the nature of the effector—cationic, anionic, or neutral—effectors and systems that use combinations of those. Widely used: In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes. Inspired by this, a lot of effort has been made in supramolecular chemistry over the last 30 years to implement this concept into artificial systems to control functions such as molecular recognition, signal amplification, or even reactivity and catalysis, which are summarized here.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201203814</identifier><identifier>PMID: 23463705</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>allosteric effects ; Allosteric Regulation ; Amplification ; Binding ; Binding Sites ; Catalysis ; Chemistry ; conformational switches ; Control ; Control systems ; cooperativity ; Enzymes ; Models, Chemical ; molecular recognition ; Proteins ; Proteins - chemistry ; Receptors ; Receptors, Artificial ; Recognition ; supramolecular chemistry</subject><ispartof>Chemistry : a European journal, 2013-05, Vol.19 (20), p.6162-6196</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5474-5badabc8c0d288d0bcd1cac1fe025318ce13fd67ebc0e37a44abddf6bd867cd13</citedby><cites>FETCH-LOGICAL-c5474-5badabc8c0d288d0bcd1cac1fe025318ce13fd67ebc0e37a44abddf6bd867cd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201203814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201203814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23463705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kremer, Christopher</creatorcontrib><creatorcontrib>Lützen, Arne</creatorcontrib><title>Artificial Allosteric Receptors</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes in cellular metabolism. Inspired by this a lot of efforts have been made in supramolecular chemistry to implement this concept into artificial systems to control functions as molecular recognition, signal amplification, or even reactivity and catalysis. This review gives an up‐to‐date overview over the different approaches that have been reported ever since the first examples from the late 1970s/early 1980s. It covers both homo‐ and heterotropic examples and is divided according to the nature of the effector—cationic, anionic, or neutral—effectors and systems that use combinations of those. Widely used: In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes. Inspired by this, a lot of effort has been made in supramolecular chemistry over the last 30 years to implement this concept into artificial systems to control functions such as molecular recognition, signal amplification, or even reactivity and catalysis, which are summarized here.</description><subject>allosteric effects</subject><subject>Allosteric Regulation</subject><subject>Amplification</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>conformational switches</subject><subject>Control</subject><subject>Control systems</subject><subject>cooperativity</subject><subject>Enzymes</subject><subject>Models, Chemical</subject><subject>molecular recognition</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Receptors</subject><subject>Receptors, Artificial</subject><subject>Recognition</subject><subject>supramolecular chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1PwjAYBvDGaATRq0cl8eJl-LZdPzgSgmBETYxiwqXp2i4ON4btiPLfOwIS44VTL7_nSd6nCJ1j6GAAcmPeXdEhgAlQieMD1MSM4IgKzg5RE7qxiDij3QY6CWEGAF1O6TFqEBpzKoA10WXPV1mamUzn7V6el6FyPjPtZ2fcoip9OEVHqc6DO9u-LfR6O3jpj6Lx0_Cu3xtHhsUijliirU6MNGCJlBYSY7HRBqcOCKNYGodparlwiQFHhY5jnVib8sRKLmpLW-h607vw5efShUoVWTAuz_XclcugsBAS6jsF2U9pLBlQAFHTq390Vi79vD5krQSTAJLWqrNRxpcheJeqhc8K7VcKg1qvrNYrq93KdeBiW7tMCmd3_HfWGnQ34CvL3WpPneqPBg9_y6NNNqv_4nuX1f5DcUEFU2-PQzWZDqcT6BN1T38A07GWsA</recordid><startdate>20130510</startdate><enddate>20130510</enddate><creator>Kremer, Christopher</creator><creator>Lützen, Arne</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130510</creationdate><title>Artificial Allosteric Receptors</title><author>Kremer, Christopher ; Lützen, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5474-5badabc8c0d288d0bcd1cac1fe025318ce13fd67ebc0e37a44abddf6bd867cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>allosteric effects</topic><topic>Allosteric Regulation</topic><topic>Amplification</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>conformational switches</topic><topic>Control</topic><topic>Control systems</topic><topic>cooperativity</topic><topic>Enzymes</topic><topic>Models, Chemical</topic><topic>molecular recognition</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Receptors</topic><topic>Receptors, Artificial</topic><topic>Recognition</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Christopher</creatorcontrib><creatorcontrib>Lützen, Arne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Christopher</au><au>Lützen, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Allosteric Receptors</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2013-05-10</date><risdate>2013</risdate><volume>19</volume><issue>20</issue><spage>6162</spage><epage>6196</epage><pages>6162-6196</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes in cellular metabolism. Inspired by this a lot of efforts have been made in supramolecular chemistry to implement this concept into artificial systems to control functions as molecular recognition, signal amplification, or even reactivity and catalysis. This review gives an up‐to‐date overview over the different approaches that have been reported ever since the first examples from the late 1970s/early 1980s. It covers both homo‐ and heterotropic examples and is divided according to the nature of the effector—cationic, anionic, or neutral—effectors and systems that use combinations of those. Widely used: In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes. Inspired by this, a lot of effort has been made in supramolecular chemistry over the last 30 years to implement this concept into artificial systems to control functions such as molecular recognition, signal amplification, or even reactivity and catalysis, which are summarized here.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23463705</pmid><doi>10.1002/chem.201203814</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2013-05, Vol.19 (20), p.6162-6196
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1778020172
source MEDLINE; Wiley Online Library
subjects allosteric effects
Allosteric Regulation
Amplification
Binding
Binding Sites
Catalysis
Chemistry
conformational switches
Control
Control systems
cooperativity
Enzymes
Models, Chemical
molecular recognition
Proteins
Proteins - chemistry
Receptors
Receptors, Artificial
Recognition
supramolecular chemistry
title Artificial Allosteric Receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Allosteric%20Receptors&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kremer,%20Christopher&rft.date=2013-05-10&rft.volume=19&rft.issue=20&rft.spage=6162&rft.epage=6196&rft.pages=6162-6196&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201203814&rft_dat=%3Cproquest_cross%3E1778020172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347580083&rft_id=info:pmid/23463705&rfr_iscdi=true