Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials
Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime b...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. R, Reports : a review journal Reports : a review journal, 2015-11, Vol.97, p.1-22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Materials science & engineering. R, Reports : a review journal |
container_volume | 97 |
creator | Mehdizadeh Dehkordi, Arash Zebarjadi, Mona He, Jian Tritt, Terry M. |
description | Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT>2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT>2! |
doi_str_mv | 10.1016/j.mser.2015.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778018264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927796X1500073X</els_id><sourcerecordid>1778018264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwBZg8siQ8O3HiIBZU8U-qxFKkbpbjvLSu4qTYKYhvj6OysDA9nd79Troj5JpByoAVt7vUBfQpByZSkCkAOyEzJssq4YyvT8kMKl4mZVWsz8lFCDsA4LkQM-JXW_RuwA7N6K2h--ELPW21GQd_Rx_7re4NOuxH6tBEYYMLVPcNDaPXI24sBtoOnm7tJgbRPfqo3ATR8W-yi3ZvdRcuyVkbD1793jl5f3pcLV6S5dvz6-JhmZg8z8akbRAaKSWvSy1FDrqQGYiiYbwWRnAuC8A6E7qpTCkLrqsCmeEZ6lrkrZR5Nic3x9y9Hz4OGEblbDDYdbrH4RAUK0sJTPJisvKj1fghBI-t2nvrtP9WDNQ0sNqpaWA1DaxAqjhwhO6PEMYSnzZ-g7EYmzfWx86qGex_-A8IAYdV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778018264</pqid></control><display><type>article</type><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</creator><creatorcontrib>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</creatorcontrib><description>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT>2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT>2!</description><identifier>ISSN: 0927-796X</identifier><identifier>EISSN: 1879-212X</identifier><identifier>DOI: 10.1016/j.mser.2015.08.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carrier Mobility ; Charge Transport ; Electron transport ; Electronic Band Structure ; Energy Harvesting ; Enhancement ; Figure of Merit ; Heat transfer ; Highly-doped Semiconductors ; Lattices ; Power Factor ; Strategy ; Thermal conductivity ; Thermoelectricity ; Thermoelectrics ; Transport</subject><ispartof>Materials science & engineering. R, Reports : a review journal, 2015-11, Vol.97, p.1-22</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</citedby><cites>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mser.2015.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mehdizadeh Dehkordi, Arash</creatorcontrib><creatorcontrib>Zebarjadi, Mona</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Tritt, Terry M.</creatorcontrib><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><title>Materials science & engineering. R, Reports : a review journal</title><description>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT>2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT>2!</description><subject>Carrier Mobility</subject><subject>Charge Transport</subject><subject>Electron transport</subject><subject>Electronic Band Structure</subject><subject>Energy Harvesting</subject><subject>Enhancement</subject><subject>Figure of Merit</subject><subject>Heat transfer</subject><subject>Highly-doped Semiconductors</subject><subject>Lattices</subject><subject>Power Factor</subject><subject>Strategy</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Thermoelectrics</subject><subject>Transport</subject><issn>0927-796X</issn><issn>1879-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwBZg8siQ8O3HiIBZU8U-qxFKkbpbjvLSu4qTYKYhvj6OysDA9nd79Troj5JpByoAVt7vUBfQpByZSkCkAOyEzJssq4YyvT8kMKl4mZVWsz8lFCDsA4LkQM-JXW_RuwA7N6K2h--ELPW21GQd_Rx_7re4NOuxH6tBEYYMLVPcNDaPXI24sBtoOnm7tJgbRPfqo3ATR8W-yi3ZvdRcuyVkbD1793jl5f3pcLV6S5dvz6-JhmZg8z8akbRAaKSWvSy1FDrqQGYiiYbwWRnAuC8A6E7qpTCkLrqsCmeEZ6lrkrZR5Nic3x9y9Hz4OGEblbDDYdbrH4RAUK0sJTPJisvKj1fghBI-t2nvrtP9WDNQ0sNqpaWA1DaxAqjhwhO6PEMYSnzZ-g7EYmzfWx86qGex_-A8IAYdV</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Mehdizadeh Dehkordi, Arash</creator><creator>Zebarjadi, Mona</creator><creator>He, Jian</creator><creator>Tritt, Terry M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201511</creationdate><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><author>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carrier Mobility</topic><topic>Charge Transport</topic><topic>Electron transport</topic><topic>Electronic Band Structure</topic><topic>Energy Harvesting</topic><topic>Enhancement</topic><topic>Figure of Merit</topic><topic>Heat transfer</topic><topic>Highly-doped Semiconductors</topic><topic>Lattices</topic><topic>Power Factor</topic><topic>Strategy</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Thermoelectrics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdizadeh Dehkordi, Arash</creatorcontrib><creatorcontrib>Zebarjadi, Mona</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Tritt, Terry M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. R, Reports : a review journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdizadeh Dehkordi, Arash</au><au>Zebarjadi, Mona</au><au>He, Jian</au><au>Tritt, Terry M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</atitle><jtitle>Materials science & engineering. R, Reports : a review journal</jtitle><date>2015-11</date><risdate>2015</risdate><volume>97</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0927-796X</issn><eissn>1879-212X</eissn><abstract>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT>2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT>2!</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mser.2015.08.001</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-796X |
ispartof | Materials science & engineering. R, Reports : a review journal, 2015-11, Vol.97, p.1-22 |
issn | 0927-796X 1879-212X |
language | eng |
recordid | cdi_proquest_miscellaneous_1778018264 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carrier Mobility Charge Transport Electron transport Electronic Band Structure Energy Harvesting Enhancement Figure of Merit Heat transfer Highly-doped Semiconductors Lattices Power Factor Strategy Thermal conductivity Thermoelectricity Thermoelectrics Transport |
title | Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20power%20factor:%20Enhancement%20mechanisms%20and%20strategies%20for%20higher%20performance%20thermoelectric%20materials&rft.jtitle=Materials%20science%20&%20engineering.%20R,%20Reports%20:%20a%20review%20journal&rft.au=Mehdizadeh%20Dehkordi,%20Arash&rft.date=2015-11&rft.volume=97&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0927-796X&rft.eissn=1879-212X&rft_id=info:doi/10.1016/j.mser.2015.08.001&rft_dat=%3Cproquest_cross%3E1778018264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778018264&rft_id=info:pmid/&rft_els_id=S0927796X1500073X&rfr_iscdi=true |