Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials

Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. R, Reports : a review journal Reports : a review journal, 2015-11, Vol.97, p.1-22
Hauptverfasser: Mehdizadeh Dehkordi, Arash, Zebarjadi, Mona, He, Jian, Tritt, Terry M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 1
container_title Materials science & engineering. R, Reports : a review journal
container_volume 97
creator Mehdizadeh Dehkordi, Arash
Zebarjadi, Mona
He, Jian
Tritt, Terry M.
description Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT>2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT>2!
doi_str_mv 10.1016/j.mser.2015.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778018264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927796X1500073X</els_id><sourcerecordid>1778018264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwBZg8siQ8O3HiIBZU8U-qxFKkbpbjvLSu4qTYKYhvj6OysDA9nd79Troj5JpByoAVt7vUBfQpByZSkCkAOyEzJssq4YyvT8kMKl4mZVWsz8lFCDsA4LkQM-JXW_RuwA7N6K2h--ELPW21GQd_Rx_7re4NOuxH6tBEYYMLVPcNDaPXI24sBtoOnm7tJgbRPfqo3ATR8W-yi3ZvdRcuyVkbD1793jl5f3pcLV6S5dvz6-JhmZg8z8akbRAaKSWvSy1FDrqQGYiiYbwWRnAuC8A6E7qpTCkLrqsCmeEZ6lrkrZR5Nic3x9y9Hz4OGEblbDDYdbrH4RAUK0sJTPJisvKj1fghBI-t2nvrtP9WDNQ0sNqpaWA1DaxAqjhwhO6PEMYSnzZ-g7EYmzfWx86qGex_-A8IAYdV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778018264</pqid></control><display><type>article</type><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</creator><creatorcontrib>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</creatorcontrib><description>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT&gt;2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT&gt;2!</description><identifier>ISSN: 0927-796X</identifier><identifier>EISSN: 1879-212X</identifier><identifier>DOI: 10.1016/j.mser.2015.08.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carrier Mobility ; Charge Transport ; Electron transport ; Electronic Band Structure ; Energy Harvesting ; Enhancement ; Figure of Merit ; Heat transfer ; Highly-doped Semiconductors ; Lattices ; Power Factor ; Strategy ; Thermal conductivity ; Thermoelectricity ; Thermoelectrics ; Transport</subject><ispartof>Materials science &amp; engineering. R, Reports : a review journal, 2015-11, Vol.97, p.1-22</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</citedby><cites>FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mser.2015.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mehdizadeh Dehkordi, Arash</creatorcontrib><creatorcontrib>Zebarjadi, Mona</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Tritt, Terry M.</creatorcontrib><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><title>Materials science &amp; engineering. R, Reports : a review journal</title><description>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT&gt;2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT&gt;2!</description><subject>Carrier Mobility</subject><subject>Charge Transport</subject><subject>Electron transport</subject><subject>Electronic Band Structure</subject><subject>Energy Harvesting</subject><subject>Enhancement</subject><subject>Figure of Merit</subject><subject>Heat transfer</subject><subject>Highly-doped Semiconductors</subject><subject>Lattices</subject><subject>Power Factor</subject><subject>Strategy</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Thermoelectrics</subject><subject>Transport</subject><issn>0927-796X</issn><issn>1879-212X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwBZg8siQ8O3HiIBZU8U-qxFKkbpbjvLSu4qTYKYhvj6OysDA9nd79Troj5JpByoAVt7vUBfQpByZSkCkAOyEzJssq4YyvT8kMKl4mZVWsz8lFCDsA4LkQM-JXW_RuwA7N6K2h--ELPW21GQd_Rx_7re4NOuxH6tBEYYMLVPcNDaPXI24sBtoOnm7tJgbRPfqo3ATR8W-yi3ZvdRcuyVkbD1793jl5f3pcLV6S5dvz6-JhmZg8z8akbRAaKSWvSy1FDrqQGYiiYbwWRnAuC8A6E7qpTCkLrqsCmeEZ6lrkrZR5Nic3x9y9Hz4OGEblbDDYdbrH4RAUK0sJTPJisvKj1fghBI-t2nvrtP9WDNQ0sNqpaWA1DaxAqjhwhO6PEMYSnzZ-g7EYmzfWx86qGex_-A8IAYdV</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Mehdizadeh Dehkordi, Arash</creator><creator>Zebarjadi, Mona</creator><creator>He, Jian</creator><creator>Tritt, Terry M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201511</creationdate><title>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</title><author>Mehdizadeh Dehkordi, Arash ; Zebarjadi, Mona ; He, Jian ; Tritt, Terry M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-fde0d8882b7a8540a683056d12b5c522860eb35ad9c7862a96e1c23eab54f8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carrier Mobility</topic><topic>Charge Transport</topic><topic>Electron transport</topic><topic>Electronic Band Structure</topic><topic>Energy Harvesting</topic><topic>Enhancement</topic><topic>Figure of Merit</topic><topic>Heat transfer</topic><topic>Highly-doped Semiconductors</topic><topic>Lattices</topic><topic>Power Factor</topic><topic>Strategy</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Thermoelectrics</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdizadeh Dehkordi, Arash</creatorcontrib><creatorcontrib>Zebarjadi, Mona</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Tritt, Terry M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. R, Reports : a review journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdizadeh Dehkordi, Arash</au><au>Zebarjadi, Mona</au><au>He, Jian</au><au>Tritt, Terry M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials</atitle><jtitle>Materials science &amp; engineering. R, Reports : a review journal</jtitle><date>2015-11</date><risdate>2015</risdate><volume>97</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0927-796X</issn><eissn>1879-212X</eissn><abstract>Thermoelectric research has witnessed groundbreaking progress over the past 15–20 years. The thermoelectric figure of merit, ZT, a measure of the competition between electronic transport (i.e. power factor) and thermal transport (i.e. total thermal conductivity), has long surpassed once a longtime barrier of ∼1 and thermoelectric scientists are targeting ZT&gt;2 as the new goal. A majority of this recent improvement in ZT has been achieved through the reduction of lattice part of thermal conductivity (κl) using nanostructuring techniques. The rapid progress in this direction focused the efforts on the development of experimental methods and understanding phonon transport to decrease lattice thermal conductivity. This fact left the development of ideas to improve electronic transport and thermoelectric power factor rather overlooked. With thermal conductivity of the potential thermoelectrics approaching the minimum theoretical limit, on the journey to higher ZT values, a paradigm shift is necessary toward the enhancement of the thermoelectric power factor. This article discusses the ideas and strategies proposed and developed in order to improve the thermoelectric power factor and thus hopefully move us closer to the target of a ZT&gt;2!</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mser.2015.08.001</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-796X
ispartof Materials science & engineering. R, Reports : a review journal, 2015-11, Vol.97, p.1-22
issn 0927-796X
1879-212X
language eng
recordid cdi_proquest_miscellaneous_1778018264
source Elsevier ScienceDirect Journals Complete
subjects Carrier Mobility
Charge Transport
Electron transport
Electronic Band Structure
Energy Harvesting
Enhancement
Figure of Merit
Heat transfer
Highly-doped Semiconductors
Lattices
Power Factor
Strategy
Thermal conductivity
Thermoelectricity
Thermoelectrics
Transport
title Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20power%20factor:%20Enhancement%20mechanisms%20and%20strategies%20for%20higher%20performance%20thermoelectric%20materials&rft.jtitle=Materials%20science%20&%20engineering.%20R,%20Reports%20:%20a%20review%20journal&rft.au=Mehdizadeh%20Dehkordi,%20Arash&rft.date=2015-11&rft.volume=97&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0927-796X&rft.eissn=1879-212X&rft_id=info:doi/10.1016/j.mser.2015.08.001&rft_dat=%3Cproquest_cross%3E1778018264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778018264&rft_id=info:pmid/&rft_els_id=S0927796X1500073X&rfr_iscdi=true