On the Local Tb Theorem: A Direct Proof under the Duality Assumption

We give a new direct proof of the local Tb theorem in the Euclidean setting and under the assumption of dual exponents. This theorem provides a flexible framework for proving the boundedness of a Calderón–Zygmund operator, supposing the existence of systems of local accretive functions. We assume th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2016-02, Vol.59 (1), p.193-222
Hauptverfasser: Lacey, Michael T., Vähäkangas, Antti V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new direct proof of the local Tb theorem in the Euclidean setting and under the assumption of dual exponents. This theorem provides a flexible framework for proving the boundedness of a Calderón–Zygmund operator, supposing the existence of systems of local accretive functions. We assume that the integrability exponents on these systems of functions are of the form 1/p + 1/q ⩽ 1, the ‘dual case’ 1/p + 1/q = 1 being the most difficult one. Our proof is direct: it avoids a reduction to the perfect dyadic case unlike some previous approaches. The principal point of interest is in the use of random grids and the corresponding construction of the corona. We also use certain twisted martingale transform inequalities.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091514000340