Hybrid materials design to control creep in metallic pipes

A hybrid material has been developed to improve creep performance in pressurized metallic pipes subjected to high-temperatures. Model materials were selected for an investigation of reinforcement design parameters in architectured materials. Brass pipes (65wt.% Cu/35wt.% Zn) with austenitic stainles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2015-11, Vol.84, p.25-35
Hauptverfasser: Reyngoud, B.P., Bishop, C.M., Kral, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 25
container_title Materials & design
container_volume 84
creator Reyngoud, B.P.
Bishop, C.M.
Kral, M.V.
description A hybrid material has been developed to improve creep performance in pressurized metallic pipes subjected to high-temperatures. Model materials were selected for an investigation of reinforcement design parameters in architectured materials. Brass pipes (65wt.% Cu/35wt.% Zn) with austenitic stainless steel reinforcement were pressurized and creep rupture tested at 673K. Compared to unreinforced pipes of equal dimensions, a 47-times reduction in the effective strain rate was observed with a 50° reinforcement angle. A ‘neutral angle’ of 54.7±1.5° was determined experimentally, where tangential (hoop) and longitudinal stresses on the pipe can be balanced and strains minimized. For initial angles below the neutral angle, creep strain was shown to facilitate a shift in orientation towards the neutral angle. For an initial angle of 42°, this shift towards the neutral angle resulted in instantaneous creep rate dropping from 170% of the mean creep rate to 60% of the mean creep rate over 820h, when the final angle was measured to be 50°. A high-temperature prototype (tungsten braid oriented at 53° over a 253MA stainless steel pipe) was shown to give a creep life extension in excess of 300-times at 1313K. [Display omitted] •Adjusting reinforcement angle (θ) controls multiaxial creep strains in pipes.•Hoop and longitudinal stresses are balanced with a 54.7° reinforcement angle (θN).•Braid reinforcement orientation changes with time to approach θN.•Tungsten braid (53°) reinforced 253MA pipe gives a 300-times creep life extension.
doi_str_mv 10.1016/j.matdes.2015.06.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778005113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264127515004396</els_id><sourcerecordid>1778005113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-17136a1a7058456fb34c339cf9b76a56511209f990e867ed139ef873631061723</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxg8siTcxYkdMyChCihSJRaYLde5IFf5wk6R-u9xVWamG-59H909jN0i5Ago73d5b-eGYl4AVjnIHGp9xhZYK5GVqNU5W0AhywwLVV2yqxh3AEWhRLlgD-vDNviGJwAFb7vIE8d_DXweuRuHOYwdd4Fo4n7gPc2267zjk58oXrOLNhXo5m8u2efL88dqnW3eX99WT5vMCaHnDBUKadEqqOqyku1WlMeFa_VWSVvJCrEA3WoNVEtFDQpNbbpcCgSJqhBLdnfiTmH83lOcTe-jo66zA437aFCpGiBhRIqWp6gLY4yBWjMF39twMAjmqMrszEmVOaoyIE1SlWqPpxqlN348BROdp8FR4wO52TSj_x_wC5CYcfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778005113</pqid></control><display><type>article</type><title>Hybrid materials design to control creep in metallic pipes</title><source>Alma/SFX Local Collection</source><creator>Reyngoud, B.P. ; Bishop, C.M. ; Kral, M.V.</creator><creatorcontrib>Reyngoud, B.P. ; Bishop, C.M. ; Kral, M.V.</creatorcontrib><description>A hybrid material has been developed to improve creep performance in pressurized metallic pipes subjected to high-temperatures. Model materials were selected for an investigation of reinforcement design parameters in architectured materials. Brass pipes (65wt.% Cu/35wt.% Zn) with austenitic stainless steel reinforcement were pressurized and creep rupture tested at 673K. Compared to unreinforced pipes of equal dimensions, a 47-times reduction in the effective strain rate was observed with a 50° reinforcement angle. A ‘neutral angle’ of 54.7±1.5° was determined experimentally, where tangential (hoop) and longitudinal stresses on the pipe can be balanced and strains minimized. For initial angles below the neutral angle, creep strain was shown to facilitate a shift in orientation towards the neutral angle. For an initial angle of 42°, this shift towards the neutral angle resulted in instantaneous creep rate dropping from 170% of the mean creep rate to 60% of the mean creep rate over 820h, when the final angle was measured to be 50°. A high-temperature prototype (tungsten braid oriented at 53° over a 253MA stainless steel pipe) was shown to give a creep life extension in excess of 300-times at 1313K. [Display omitted] •Adjusting reinforcement angle (θ) controls multiaxial creep strains in pipes.•Hoop and longitudinal stresses are balanced with a 54.7° reinforcement angle (θN).•Braid reinforcement orientation changes with time to approach θN.•Tungsten braid (53°) reinforced 253MA pipe gives a 300-times creep life extension.</description><identifier>ISSN: 0264-1275</identifier><identifier>EISSN: 1873-4197</identifier><identifier>DOI: 10.1016/j.matdes.2015.06.089</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Architectured reinforcement ; Austenitic stainless steels ; Creep ; Creep (materials) ; Creep rate ; Hoops ; Hybrid ; Materials selection ; Neutral angle ; Pipe ; Reinforcement ; Strain</subject><ispartof>Materials &amp; design, 2015-11, Vol.84, p.25-35</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-17136a1a7058456fb34c339cf9b76a56511209f990e867ed139ef873631061723</citedby><cites>FETCH-LOGICAL-c339t-17136a1a7058456fb34c339cf9b76a56511209f990e867ed139ef873631061723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Reyngoud, B.P.</creatorcontrib><creatorcontrib>Bishop, C.M.</creatorcontrib><creatorcontrib>Kral, M.V.</creatorcontrib><title>Hybrid materials design to control creep in metallic pipes</title><title>Materials &amp; design</title><description>A hybrid material has been developed to improve creep performance in pressurized metallic pipes subjected to high-temperatures. Model materials were selected for an investigation of reinforcement design parameters in architectured materials. Brass pipes (65wt.% Cu/35wt.% Zn) with austenitic stainless steel reinforcement were pressurized and creep rupture tested at 673K. Compared to unreinforced pipes of equal dimensions, a 47-times reduction in the effective strain rate was observed with a 50° reinforcement angle. A ‘neutral angle’ of 54.7±1.5° was determined experimentally, where tangential (hoop) and longitudinal stresses on the pipe can be balanced and strains minimized. For initial angles below the neutral angle, creep strain was shown to facilitate a shift in orientation towards the neutral angle. For an initial angle of 42°, this shift towards the neutral angle resulted in instantaneous creep rate dropping from 170% of the mean creep rate to 60% of the mean creep rate over 820h, when the final angle was measured to be 50°. A high-temperature prototype (tungsten braid oriented at 53° over a 253MA stainless steel pipe) was shown to give a creep life extension in excess of 300-times at 1313K. [Display omitted] •Adjusting reinforcement angle (θ) controls multiaxial creep strains in pipes.•Hoop and longitudinal stresses are balanced with a 54.7° reinforcement angle (θN).•Braid reinforcement orientation changes with time to approach θN.•Tungsten braid (53°) reinforced 253MA pipe gives a 300-times creep life extension.</description><subject>Architectured reinforcement</subject><subject>Austenitic stainless steels</subject><subject>Creep</subject><subject>Creep (materials)</subject><subject>Creep rate</subject><subject>Hoops</subject><subject>Hybrid</subject><subject>Materials selection</subject><subject>Neutral angle</subject><subject>Pipe</subject><subject>Reinforcement</subject><subject>Strain</subject><issn>0264-1275</issn><issn>1873-4197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxg8siTcxYkdMyChCihSJRaYLde5IFf5wk6R-u9xVWamG-59H909jN0i5Ago73d5b-eGYl4AVjnIHGp9xhZYK5GVqNU5W0AhywwLVV2yqxh3AEWhRLlgD-vDNviGJwAFb7vIE8d_DXweuRuHOYwdd4Fo4n7gPc2267zjk58oXrOLNhXo5m8u2efL88dqnW3eX99WT5vMCaHnDBUKadEqqOqyku1WlMeFa_VWSVvJCrEA3WoNVEtFDQpNbbpcCgSJqhBLdnfiTmH83lOcTe-jo66zA437aFCpGiBhRIqWp6gLY4yBWjMF39twMAjmqMrszEmVOaoyIE1SlWqPpxqlN348BROdp8FR4wO52TSj_x_wC5CYcfA</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Reyngoud, B.P.</creator><creator>Bishop, C.M.</creator><creator>Kral, M.V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151105</creationdate><title>Hybrid materials design to control creep in metallic pipes</title><author>Reyngoud, B.P. ; Bishop, C.M. ; Kral, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-17136a1a7058456fb34c339cf9b76a56511209f990e867ed139ef873631061723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Architectured reinforcement</topic><topic>Austenitic stainless steels</topic><topic>Creep</topic><topic>Creep (materials)</topic><topic>Creep rate</topic><topic>Hoops</topic><topic>Hybrid</topic><topic>Materials selection</topic><topic>Neutral angle</topic><topic>Pipe</topic><topic>Reinforcement</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyngoud, B.P.</creatorcontrib><creatorcontrib>Bishop, C.M.</creatorcontrib><creatorcontrib>Kral, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyngoud, B.P.</au><au>Bishop, C.M.</au><au>Kral, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid materials design to control creep in metallic pipes</atitle><jtitle>Materials &amp; design</jtitle><date>2015-11-05</date><risdate>2015</risdate><volume>84</volume><spage>25</spage><epage>35</epage><pages>25-35</pages><issn>0264-1275</issn><eissn>1873-4197</eissn><abstract>A hybrid material has been developed to improve creep performance in pressurized metallic pipes subjected to high-temperatures. Model materials were selected for an investigation of reinforcement design parameters in architectured materials. Brass pipes (65wt.% Cu/35wt.% Zn) with austenitic stainless steel reinforcement were pressurized and creep rupture tested at 673K. Compared to unreinforced pipes of equal dimensions, a 47-times reduction in the effective strain rate was observed with a 50° reinforcement angle. A ‘neutral angle’ of 54.7±1.5° was determined experimentally, where tangential (hoop) and longitudinal stresses on the pipe can be balanced and strains minimized. For initial angles below the neutral angle, creep strain was shown to facilitate a shift in orientation towards the neutral angle. For an initial angle of 42°, this shift towards the neutral angle resulted in instantaneous creep rate dropping from 170% of the mean creep rate to 60% of the mean creep rate over 820h, when the final angle was measured to be 50°. A high-temperature prototype (tungsten braid oriented at 53° over a 253MA stainless steel pipe) was shown to give a creep life extension in excess of 300-times at 1313K. [Display omitted] •Adjusting reinforcement angle (θ) controls multiaxial creep strains in pipes.•Hoop and longitudinal stresses are balanced with a 54.7° reinforcement angle (θN).•Braid reinforcement orientation changes with time to approach θN.•Tungsten braid (53°) reinforced 253MA pipe gives a 300-times creep life extension.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2015.06.089</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-1275
ispartof Materials & design, 2015-11, Vol.84, p.25-35
issn 0264-1275
1873-4197
language eng
recordid cdi_proquest_miscellaneous_1778005113
source Alma/SFX Local Collection
subjects Architectured reinforcement
Austenitic stainless steels
Creep
Creep (materials)
Creep rate
Hoops
Hybrid
Materials selection
Neutral angle
Pipe
Reinforcement
Strain
title Hybrid materials design to control creep in metallic pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20materials%20design%20to%20control%20creep%20in%20metallic%20pipes&rft.jtitle=Materials%20&%20design&rft.au=Reyngoud,%20B.P.&rft.date=2015-11-05&rft.volume=84&rft.spage=25&rft.epage=35&rft.pages=25-35&rft.issn=0264-1275&rft.eissn=1873-4197&rft_id=info:doi/10.1016/j.matdes.2015.06.089&rft_dat=%3Cproquest_cross%3E1778005113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778005113&rft_id=info:pmid/&rft_els_id=S0264127515004396&rfr_iscdi=true