In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology
The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors....
Gespeichert in:
Veröffentlicht in: | Water S. A. 2015-10, Vol.41 (5), p.683-690 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 5 |
container_start_page | 683 |
container_title | Water S. A. |
container_volume | 41 |
creator | Haldenwang, R. Kotze, R. Rossle, W. Fester, V. |
description | The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors. In-line process control based on accurate rheological characterisation for treated wastewater sludge could lead to significant savings in chemicals and will optimise dewatering processes producing drier sludges. In this work, a wastewater sludge at three concentrations was tested in order to investigate the capabilities of the in-line ultrasound technique for different viscosities and fluid properties. The rheological parameters obtained using the new ultrasound sensor and ultrasonic velocity profiling with combined pressure difference (UVP + PD) technique were compared with results obtained using conventional tube viscometry. Comparison with tube viscometer results showed that yield stresses could be overestimated by 120% if data are not available in the low shear-rate ranges. This non-invasive transducer proved to be sensitive enough to obtain flow curves over a large shear-rate range, improving the prediction of the yield stress and requiring about 50% less energy than the invasive system. |
doi_str_mv | 10.4314/wsa.v41i5.11 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778001478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435543044</galeid><sabinet_id>10520/EJC179280</sabinet_id><sourcerecordid>A435543044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-2b0597bf0192425a46cb5a9d4ccde9b007f91a6ee4531ae3e7631932b9249a533</originalsourceid><addsrcrecordid>eNqNkcGO1DAMhisEEsvCjQeIhJA40CFpkrY5rka7sGglLnCO3NSdySiTDHE7o317MgwHtKeVD7as77dl_1X1XvCVkkJ9ORGsjkp4vRLiRXXFZdfXqpP9y__q19Uboh3njZTKXFW7-1gHH5HlLaaQNt5BYG4LGdyM2RPMPkWWJnYCmvEEpckoLOMGiS3k44bFFGsfj0D-iGwJcwZKSxwZYaSU2YxuG8-TH99WryYIhO_-5evq193tz_W3-uHH1_v1zUPttFBz3Qxcm26YuDCNajSo1g0azKicG9EMnHeTEdAiKi0FoMSulcLIZii4AS3ldfXpMveQ0-8FabZ7Tw5DgIhpISu6rudcqK5_Bqql0r3q24J-eILu0pJjOaRQUknOW3PevbpQGwhofZxS-YcrMeLeuxRx8qV_o6TWRaJUEXy-CFxORBkne8h-D_nRCm7Pptpiqv1rqhWi4B8vOMFQXJstAR6WocC64fb2-1p0pum5_AM5u6IM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734300693</pqid></control><display><type>article</type><title>In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology</title><source>African Journals Online</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Sabinet African Journals Open Access Collection</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Haldenwang, R. ; Kotze, R. ; Rossle, W. ; Fester, V.</creator><creatorcontrib>Haldenwang, R. ; Kotze, R. ; Rossle, W. ; Fester, V.</creatorcontrib><description>The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors. In-line process control based on accurate rheological characterisation for treated wastewater sludge could lead to significant savings in chemicals and will optimise dewatering processes producing drier sludges. In this work, a wastewater sludge at three concentrations was tested in order to investigate the capabilities of the in-line ultrasound technique for different viscosities and fluid properties. The rheological parameters obtained using the new ultrasound sensor and ultrasonic velocity profiling with combined pressure difference (UVP + PD) technique were compared with results obtained using conventional tube viscometry. Comparison with tube viscometer results showed that yield stresses could be overestimated by 120% if data are not available in the low shear-rate ranges. This non-invasive transducer proved to be sensitive enough to obtain flow curves over a large shear-rate range, improving the prediction of the yield stress and requiring about 50% less energy than the invasive system.</description><identifier>ISSN: 0378-4738</identifier><identifier>EISSN: 0378-4738</identifier><identifier>DOI: 10.4314/wsa.v41i5.11</identifier><language>eng</language><publisher>Gezina: Water Research Commission (WRC)</publisher><subject>Dewatering ; Flow velocity ; Non-invasive ; Non-Newtonian ; Non-Newtonian fluids ; Observations ; Process control ; Properties ; Rheological properties ; Rheology ; Secondary wastewater ; Sensors ; Sludge ; Sludge dewatering ; Sludge rheology ; Test equipment ; Transducers ; Tube viscometry ; Ultrasonic testing ; Ultrasonic transducers ; Ultrasonic velocity profiling ; Ultrasound ; UVP + PD methodology ; Waste water ; Wastewater ; Wastewater treatment ; Water treatment ; Yield stress</subject><ispartof>Water S. A., 2015-10, Vol.41 (5), p.683-690</ispartof><rights>COPYRIGHT 2015 Water Research Commission</rights><rights>Copyright Water Research Commission Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-2b0597bf0192425a46cb5a9d4ccde9b007f91a6ee4531ae3e7631932b9249a533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925,39242</link.rule.ids></links><search><creatorcontrib>Haldenwang, R.</creatorcontrib><creatorcontrib>Kotze, R.</creatorcontrib><creatorcontrib>Rossle, W.</creatorcontrib><creatorcontrib>Fester, V.</creatorcontrib><title>In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology</title><title>Water S. A.</title><description>The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors. In-line process control based on accurate rheological characterisation for treated wastewater sludge could lead to significant savings in chemicals and will optimise dewatering processes producing drier sludges. In this work, a wastewater sludge at three concentrations was tested in order to investigate the capabilities of the in-line ultrasound technique for different viscosities and fluid properties. The rheological parameters obtained using the new ultrasound sensor and ultrasonic velocity profiling with combined pressure difference (UVP + PD) technique were compared with results obtained using conventional tube viscometry. Comparison with tube viscometer results showed that yield stresses could be overestimated by 120% if data are not available in the low shear-rate ranges. This non-invasive transducer proved to be sensitive enough to obtain flow curves over a large shear-rate range, improving the prediction of the yield stress and requiring about 50% less energy than the invasive system.</description><subject>Dewatering</subject><subject>Flow velocity</subject><subject>Non-invasive</subject><subject>Non-Newtonian</subject><subject>Non-Newtonian fluids</subject><subject>Observations</subject><subject>Process control</subject><subject>Properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Secondary wastewater</subject><subject>Sensors</subject><subject>Sludge</subject><subject>Sludge dewatering</subject><subject>Sludge rheology</subject><subject>Test equipment</subject><subject>Transducers</subject><subject>Tube viscometry</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonic velocity profiling</subject><subject>Ultrasound</subject><subject>UVP + PD methodology</subject><subject>Waste water</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><subject>Yield stress</subject><issn>0378-4738</issn><issn>0378-4738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>JRA</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkcGO1DAMhisEEsvCjQeIhJA40CFpkrY5rka7sGglLnCO3NSdySiTDHE7o317MgwHtKeVD7as77dl_1X1XvCVkkJ9ORGsjkp4vRLiRXXFZdfXqpP9y__q19Uboh3njZTKXFW7-1gHH5HlLaaQNt5BYG4LGdyM2RPMPkWWJnYCmvEEpckoLOMGiS3k44bFFGsfj0D-iGwJcwZKSxwZYaSU2YxuG8-TH99WryYIhO_-5evq193tz_W3-uHH1_v1zUPttFBz3Qxcm26YuDCNajSo1g0azKicG9EMnHeTEdAiKi0FoMSulcLIZii4AS3ldfXpMveQ0-8FabZ7Tw5DgIhpISu6rudcqK5_Bqql0r3q24J-eILu0pJjOaRQUknOW3PevbpQGwhofZxS-YcrMeLeuxRx8qV_o6TWRaJUEXy-CFxORBkne8h-D_nRCm7Pptpiqv1rqhWi4B8vOMFQXJstAR6WocC64fb2-1p0pum5_AM5u6IM</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Haldenwang, R.</creator><creator>Kotze, R.</creator><creator>Rossle, W.</creator><creator>Fester, V.</creator><general>Water Research Commission (WRC)</general><general>Water Research Commission</general><scope>AEIZH</scope><scope>JRA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QO</scope><scope>KR7</scope></search><sort><creationdate>20151001</creationdate><title>In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology</title><author>Haldenwang, R. ; Kotze, R. ; Rossle, W. ; Fester, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-2b0597bf0192425a46cb5a9d4ccde9b007f91a6ee4531ae3e7631932b9249a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dewatering</topic><topic>Flow velocity</topic><topic>Non-invasive</topic><topic>Non-Newtonian</topic><topic>Non-Newtonian fluids</topic><topic>Observations</topic><topic>Process control</topic><topic>Properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Secondary wastewater</topic><topic>Sensors</topic><topic>Sludge</topic><topic>Sludge dewatering</topic><topic>Sludge rheology</topic><topic>Test equipment</topic><topic>Transducers</topic><topic>Tube viscometry</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonic velocity profiling</topic><topic>Ultrasound</topic><topic>UVP + PD methodology</topic><topic>Waste water</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haldenwang, R.</creatorcontrib><creatorcontrib>Kotze, R.</creatorcontrib><creatorcontrib>Rossle, W.</creatorcontrib><creatorcontrib>Fester, V.</creatorcontrib><collection>Sabinet:Open Access</collection><collection>Sabinet African Journals Open Access Collection</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water S. A.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haldenwang, R.</au><au>Kotze, R.</au><au>Rossle, W.</au><au>Fester, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology</atitle><jtitle>Water S. A.</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>41</volume><issue>5</issue><spage>683</spage><epage>690</epage><pages>683-690</pages><issn>0378-4738</issn><eissn>0378-4738</eissn><abstract>The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors. In-line process control based on accurate rheological characterisation for treated wastewater sludge could lead to significant savings in chemicals and will optimise dewatering processes producing drier sludges. In this work, a wastewater sludge at three concentrations was tested in order to investigate the capabilities of the in-line ultrasound technique for different viscosities and fluid properties. The rheological parameters obtained using the new ultrasound sensor and ultrasonic velocity profiling with combined pressure difference (UVP + PD) technique were compared with results obtained using conventional tube viscometry. Comparison with tube viscometer results showed that yield stresses could be overestimated by 120% if data are not available in the low shear-rate ranges. This non-invasive transducer proved to be sensitive enough to obtain flow curves over a large shear-rate range, improving the prediction of the yield stress and requiring about 50% less energy than the invasive system.</abstract><cop>Gezina</cop><pub>Water Research Commission (WRC)</pub><doi>10.4314/wsa.v41i5.11</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4738 |
ispartof | Water S. A., 2015-10, Vol.41 (5), p.683-690 |
issn | 0378-4738 0378-4738 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778001478 |
source | African Journals Online; Full-Text Journals in Chemistry (Open access); Sabinet African Journals Open Access Collection; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Dewatering Flow velocity Non-invasive Non-Newtonian Non-Newtonian fluids Observations Process control Properties Rheological properties Rheology Secondary wastewater Sensors Sludge Sludge dewatering Sludge rheology Test equipment Transducers Tube viscometry Ultrasonic testing Ultrasonic transducers Ultrasonic velocity profiling Ultrasound UVP + PD methodology Waste water Wastewater Wastewater treatment Water treatment Yield stress |
title | In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-line%20rheological%20characterisation%20of%20wastewater%20sludges%20using%20non-invasive%20ultrasound%20sensor%20technology&rft.jtitle=Water%20S.%20A.&rft.au=Haldenwang,%20R.&rft.date=2015-10-01&rft.volume=41&rft.issue=5&rft.spage=683&rft.epage=690&rft.pages=683-690&rft.issn=0378-4738&rft.eissn=0378-4738&rft_id=info:doi/10.4314/wsa.v41i5.11&rft_dat=%3Cgale_proqu%3EA435543044%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734300693&rft_id=info:pmid/&rft_galeid=A435543044&rft_sabinet_id=10520/EJC179280&rfr_iscdi=true |