Linear ion trap with added octopole field component: the property and method

It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mass spectrometry. 2015-12, Vol.50 (12), p.1400-1408
Hauptverfasser: Dang, Qiankun, Xu, Fuxing, Huang, Xiaohua, Fang, Xiang, Wang, Rizhi, Ding, Chuan‐Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1408
container_issue 12
container_start_page 1400
container_title Journal of mass spectrometry.
container_volume 50
creator Dang, Qiankun
Xu, Fuxing
Huang, Xiaohua
Fang, Xiang
Wang, Rizhi
Ding, Chuan‐Fan
description It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jms.3714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778000711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744661872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuBBFPuh4C_QgDe9mZozySQT78rSVmVVai29DNnJGTfrzGRMsrT775tl1wqC4FVy8fByznuK4hXQU6C0erca4imTwJ8Uh0CVKFXTNE-3fynKGiQ_KI5iXFFKleLieXFQCcG4kvVhMZ-7EU0gzo8kBTORO5eWxFiLlvg2-cn3SDqHvSWtHyY_4pjek7REMgU_YUgbYkZLBkxLb18UzzrTR3y5f4-Lm4vz77MP5fzr5cfZ2bxseQO8rDoAmSeBVrTKdMCYwo5JLi1KyupWCc4tKKAgDF3USgjFqTBswRtbV0yx4-Jkl5tn-LXGmPTgYot9b0b066hByiYvKwH-g3IuBDSyyvTtX3Tl12HMi2TFGlXVjNM_gW3wMQbs9BTcYMJGA9XbY-h8DL09Rqav94HrxYD2Ef5uP4NyB-5cj5t_BulPn6_3gXvvYsL7R2_CTy0kk7W-_XKpxexK3cpvTF9l_2bnO-O1-RFc1DfXVa41lwOszk0-AF8mp7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738925340</pqid></control><display><type>article</type><title>Linear ion trap with added octopole field component: the property and method</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</creator><creatorcontrib>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</creatorcontrib><description>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.3714</identifier><identifier>PMID: 26634975</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Analyzers ; Assembly ; Computer Simulation ; Ejection ; Electrodes ; Equipment Design ; linear ion trap ; Mass spectrometry ; Mass Spectrometry - instrumentation ; Mass Spectrometry - methods ; Mathematical models ; octopole ; Optimization ; Quadrupoles ; radial ejection ; rectangular electrode ; Reserpine ; semi-circular electrode ; tandem mass spectrometry</subject><ispartof>Journal of mass spectrometry., 2015-12, Vol.50 (12), p.1400-1408</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</citedby><cites>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjms.3714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjms.3714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26634975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dang, Qiankun</creatorcontrib><creatorcontrib>Xu, Fuxing</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Ding, Chuan‐Fan</creatorcontrib><title>Linear ion trap with added octopole field component: the property and method</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Analyzers</subject><subject>Assembly</subject><subject>Computer Simulation</subject><subject>Ejection</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>linear ion trap</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - instrumentation</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical models</subject><subject>octopole</subject><subject>Optimization</subject><subject>Quadrupoles</subject><subject>radial ejection</subject><subject>rectangular electrode</subject><subject>Reserpine</subject><subject>semi-circular electrode</subject><subject>tandem mass spectrometry</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuBBFPuh4C_QgDe9mZozySQT78rSVmVVai29DNnJGTfrzGRMsrT775tl1wqC4FVy8fByznuK4hXQU6C0erca4imTwJ8Uh0CVKFXTNE-3fynKGiQ_KI5iXFFKleLieXFQCcG4kvVhMZ-7EU0gzo8kBTORO5eWxFiLlvg2-cn3SDqHvSWtHyY_4pjek7REMgU_YUgbYkZLBkxLb18UzzrTR3y5f4-Lm4vz77MP5fzr5cfZ2bxseQO8rDoAmSeBVrTKdMCYwo5JLi1KyupWCc4tKKAgDF3USgjFqTBswRtbV0yx4-Jkl5tn-LXGmPTgYot9b0b066hByiYvKwH-g3IuBDSyyvTtX3Tl12HMi2TFGlXVjNM_gW3wMQbs9BTcYMJGA9XbY-h8DL09Rqav94HrxYD2Ef5uP4NyB-5cj5t_BulPn6_3gXvvYsL7R2_CTy0kk7W-_XKpxexK3cpvTF9l_2bnO-O1-RFc1DfXVa41lwOszk0-AF8mp7s</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Dang, Qiankun</creator><creator>Xu, Fuxing</creator><creator>Huang, Xiaohua</creator><creator>Fang, Xiang</creator><creator>Wang, Rizhi</creator><creator>Ding, Chuan‐Fan</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201512</creationdate><title>Linear ion trap with added octopole field component: the property and method</title><author>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analyzers</topic><topic>Assembly</topic><topic>Computer Simulation</topic><topic>Ejection</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>linear ion trap</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - instrumentation</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical models</topic><topic>octopole</topic><topic>Optimization</topic><topic>Quadrupoles</topic><topic>radial ejection</topic><topic>rectangular electrode</topic><topic>Reserpine</topic><topic>semi-circular electrode</topic><topic>tandem mass spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Qiankun</creatorcontrib><creatorcontrib>Xu, Fuxing</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Ding, Chuan‐Fan</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Qiankun</au><au>Xu, Fuxing</au><au>Huang, Xiaohua</au><au>Fang, Xiang</au><au>Wang, Rizhi</au><au>Ding, Chuan‐Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear ion trap with added octopole field component: the property and method</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>2015-12</date><risdate>2015</risdate><volume>50</volume><issue>12</issue><spage>1400</spage><epage>1408</epage><pages>1400-1408</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Wiley</pub><pmid>26634975</pmid><doi>10.1002/jms.3714</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2015-12, Vol.50 (12), p.1400-1408
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_1778000711
source MEDLINE; Access via Wiley Online Library
subjects Analyzers
Assembly
Computer Simulation
Ejection
Electrodes
Equipment Design
linear ion trap
Mass spectrometry
Mass Spectrometry - instrumentation
Mass Spectrometry - methods
Mathematical models
octopole
Optimization
Quadrupoles
radial ejection
rectangular electrode
Reserpine
semi-circular electrode
tandem mass spectrometry
title Linear ion trap with added octopole field component: the property and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20ion%20trap%20with%20added%20octopole%20field%20component:%20the%20property%20and%20method&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Dang,%20Qiankun&rft.date=2015-12&rft.volume=50&rft.issue=12&rft.spage=1400&rft.epage=1408&rft.pages=1400-1408&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.3714&rft_dat=%3Cproquest_cross%3E1744661872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738925340&rft_id=info:pmid/26634975&rfr_iscdi=true