Linear ion trap with added octopole field component: the property and method
It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. I...
Gespeichert in:
Veröffentlicht in: | Journal of mass spectrometry. 2015-12, Vol.50 (12), p.1400-1408 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1408 |
---|---|
container_issue | 12 |
container_start_page | 1400 |
container_title | Journal of mass spectrometry. |
container_volume | 50 |
creator | Dang, Qiankun Xu, Fuxing Huang, Xiaohua Fang, Xiang Wang, Rizhi Ding, Chuan‐Fan |
description | It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/jms.3714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778000711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744661872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuBBFPuh4C_QgDe9mZozySQT78rSVmVVai29DNnJGTfrzGRMsrT775tl1wqC4FVy8fByznuK4hXQU6C0erca4imTwJ8Uh0CVKFXTNE-3fynKGiQ_KI5iXFFKleLieXFQCcG4kvVhMZ-7EU0gzo8kBTORO5eWxFiLlvg2-cn3SDqHvSWtHyY_4pjek7REMgU_YUgbYkZLBkxLb18UzzrTR3y5f4-Lm4vz77MP5fzr5cfZ2bxseQO8rDoAmSeBVrTKdMCYwo5JLi1KyupWCc4tKKAgDF3USgjFqTBswRtbV0yx4-Jkl5tn-LXGmPTgYot9b0b066hByiYvKwH-g3IuBDSyyvTtX3Tl12HMi2TFGlXVjNM_gW3wMQbs9BTcYMJGA9XbY-h8DL09Rqav94HrxYD2Ef5uP4NyB-5cj5t_BulPn6_3gXvvYsL7R2_CTy0kk7W-_XKpxexK3cpvTF9l_2bnO-O1-RFc1DfXVa41lwOszk0-AF8mp7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738925340</pqid></control><display><type>article</type><title>Linear ion trap with added octopole field component: the property and method</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</creator><creatorcontrib>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</creatorcontrib><description>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.3714</identifier><identifier>PMID: 26634975</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Analyzers ; Assembly ; Computer Simulation ; Ejection ; Electrodes ; Equipment Design ; linear ion trap ; Mass spectrometry ; Mass Spectrometry - instrumentation ; Mass Spectrometry - methods ; Mathematical models ; octopole ; Optimization ; Quadrupoles ; radial ejection ; rectangular electrode ; Reserpine ; semi-circular electrode ; tandem mass spectrometry</subject><ispartof>Journal of mass spectrometry., 2015-12, Vol.50 (12), p.1400-1408</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</citedby><cites>FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjms.3714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjms.3714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26634975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dang, Qiankun</creatorcontrib><creatorcontrib>Xu, Fuxing</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Ding, Chuan‐Fan</creatorcontrib><title>Linear ion trap with added octopole field component: the property and method</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Analyzers</subject><subject>Assembly</subject><subject>Computer Simulation</subject><subject>Ejection</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>linear ion trap</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - instrumentation</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical models</subject><subject>octopole</subject><subject>Optimization</subject><subject>Quadrupoles</subject><subject>radial ejection</subject><subject>rectangular electrode</subject><subject>Reserpine</subject><subject>semi-circular electrode</subject><subject>tandem mass spectrometry</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuBBFPuh4C_QgDe9mZozySQT78rSVmVVai29DNnJGTfrzGRMsrT775tl1wqC4FVy8fByznuK4hXQU6C0erca4imTwJ8Uh0CVKFXTNE-3fynKGiQ_KI5iXFFKleLieXFQCcG4kvVhMZ-7EU0gzo8kBTORO5eWxFiLlvg2-cn3SDqHvSWtHyY_4pjek7REMgU_YUgbYkZLBkxLb18UzzrTR3y5f4-Lm4vz77MP5fzr5cfZ2bxseQO8rDoAmSeBVrTKdMCYwo5JLi1KyupWCc4tKKAgDF3USgjFqTBswRtbV0yx4-Jkl5tn-LXGmPTgYot9b0b066hByiYvKwH-g3IuBDSyyvTtX3Tl12HMi2TFGlXVjNM_gW3wMQbs9BTcYMJGA9XbY-h8DL09Rqav94HrxYD2Ef5uP4NyB-5cj5t_BulPn6_3gXvvYsL7R2_CTy0kk7W-_XKpxexK3cpvTF9l_2bnO-O1-RFc1DfXVa41lwOszk0-AF8mp7s</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Dang, Qiankun</creator><creator>Xu, Fuxing</creator><creator>Huang, Xiaohua</creator><creator>Fang, Xiang</creator><creator>Wang, Rizhi</creator><creator>Ding, Chuan‐Fan</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201512</creationdate><title>Linear ion trap with added octopole field component: the property and method</title><author>Dang, Qiankun ; Xu, Fuxing ; Huang, Xiaohua ; Fang, Xiang ; Wang, Rizhi ; Ding, Chuan‐Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-2f1179941c6c9af1339ef3747de7035c9644d191016a0b59669406a3b48d52393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analyzers</topic><topic>Assembly</topic><topic>Computer Simulation</topic><topic>Ejection</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>linear ion trap</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - instrumentation</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical models</topic><topic>octopole</topic><topic>Optimization</topic><topic>Quadrupoles</topic><topic>radial ejection</topic><topic>rectangular electrode</topic><topic>Reserpine</topic><topic>semi-circular electrode</topic><topic>tandem mass spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Qiankun</creatorcontrib><creatorcontrib>Xu, Fuxing</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Ding, Chuan‐Fan</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Qiankun</au><au>Xu, Fuxing</au><au>Huang, Xiaohua</au><au>Fang, Xiang</au><au>Wang, Rizhi</au><au>Ding, Chuan‐Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear ion trap with added octopole field component: the property and method</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>2015-12</date><risdate>2015</risdate><volume>50</volume><issue>12</issue><spage>1400</spage><epage>1408</epage><pages>1400-1408</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>It is well known that superimposition of some positive octopole field will benefit the performance of ion trap mass analyzer. In the radial‐ejection linear ion trap (LIT), adding some octopole field component to the main quadrupole field is usually accomplished by stretching the ejection rod pair. In this study, the effect of octopole potential and some other higher order potential on the performance of LIT mass analyzer is investigated. A simple and effective method, which is to add some octopole component by building a LIT with a pair of rectangular electrodes and a pair of semi‐circular electrodes, is reported. Its properties were studied by numerical simulations and experiments. The results showed that a certain amount of positive octopole component could be produced by simply adjusting the position and width of the rectangular electrodes. A resolution of over 1200 at m/z 609 (~1600 Da/s) was observed in this type of LIT. They also performed tandem mass spectrometry well. The device with optimum geometry for ion ejection from rectangular electrodes provided comparable performance to that for ion ejection from semi‐circular electrodes. This type of LIT design is easy for fabrication and assembly. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Wiley</pub><pmid>26634975</pmid><doi>10.1002/jms.3714</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 2015-12, Vol.50 (12), p.1400-1408 |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778000711 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Analyzers Assembly Computer Simulation Ejection Electrodes Equipment Design linear ion trap Mass spectrometry Mass Spectrometry - instrumentation Mass Spectrometry - methods Mathematical models octopole Optimization Quadrupoles radial ejection rectangular electrode Reserpine semi-circular electrode tandem mass spectrometry |
title | Linear ion trap with added octopole field component: the property and method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20ion%20trap%20with%20added%20octopole%20field%20component:%20the%20property%20and%20method&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Dang,%20Qiankun&rft.date=2015-12&rft.volume=50&rft.issue=12&rft.spage=1400&rft.epage=1408&rft.pages=1400-1408&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.3714&rft_dat=%3Cproquest_cross%3E1744661872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738925340&rft_id=info:pmid/26634975&rfr_iscdi=true |