Elevated-temperature tribological behavior of Ti–B–C–N coatings deposited by reactive magnetron sputtering
Quaternary Ti-B-C-N coatings with various carbon contents were deposited on high-speed steel(HSS)substrates by reactive magnetron sputtering(RMS) system.The elevated-temperature tribological behavior of Ti-BC-N coatings was explored using pin-on-disk tribometer,scanning electron microscopy(SEM),and...
Gespeichert in:
Veröffentlicht in: | Rare metals 2015-12, Vol.34 (12), p.838-843 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quaternary Ti-B-C-N coatings with various carbon contents were deposited on high-speed steel(HSS)substrates by reactive magnetron sputtering(RMS) system.The elevated-temperature tribological behavior of Ti-BC-N coatings was explored using pin-on-disk tribometer,scanning electron microscopy(SEM),and energy-dispersive X-ray spectroscopy(EDX).The present results show that the steady-state friction coefficient value and the instantaneous friction coefficient fluctuation range of TiB-C-N coatings decrease as carbon content increases at100 and 300 ℃,while the steady-state friction coefficient value of all Ti-B-C-N coatings becomes higher than 0.4 at500 ℃.As ambient temperature increases,the running-in periods of all Ti-B-C-N coatings become shorter.Wear damage to Ti-B-C-N coatings during sliding at elevated temperature is mainly caused by adhesive wear,and adhesive-wear damage to Ti-B-C-N coatings increases as ambient temperature increases;however,higher carbon content is beneficial for decreasing the adhesive-wear damage to Ti-B-C-N coatings during sliding at elevated temperature. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-015-0640-0 |