Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a cha...
Gespeichert in:
Veröffentlicht in: | The international journal of high performance computing applications 2013-05, Vol.27 (2), p.193-209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | The international journal of high performance computing applications |
container_volume | 27 |
creator | Malas, Tareq Ahmadia, Aron J. Brown, Jed Gunnels, John A. Keyes, David E. |
description | Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer’s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU’s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7
×
speedup over the best previously published results. |
doi_str_mv | 10.1177/1094342012444795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777997627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094342012444795</sage_id><sourcerecordid>1365157121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a64e7f097bfeb08a32da99936a421f245d78435c57e8e33ff56869a4289e99243</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFbvHgMieFlNsvk82qK1UGkPel7S7aRu3d3UZBfRv97UFpGCeErg_ebNzJskOSf4mhApbwjWLGMUE8oYk5ofJD0iGUmpYuIw_qOcbvTj5CSEFcZYsIz3Ejtdt2VdfpbNErUvgNbgrfO1aQpAzqLQejD1Rmy6GnxZmAq9gm-gCsg13xXjwSMaVB2gETRwM0Mz9w5-NkSMY7T2roAQnD9NjqypApzt3n7yfH_3NHxIJ9PReHg7SQuGeZsawUBarOXcwhwrk9GF0VpnwjBKLGV8IVUcu-ASFGSZtVwooaOoNGhNWdZPrra-sfNbB6HN6zIUUFWmAdeFPCYltZaCyv_RTHDCJaEkohd76Mp1vomLRIppqeJQOlJ4SxXeheDB5mtf1sZ_5ATnmxvl-zeKJZc7YxNitNbH3MvwUxenpEQoFbl0ywWzhF_N__L9AtkFms0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349788439</pqid></control><display><type>article</type><title>Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor</title><source>SAGE Journals</source><source>Alma/SFX Local Collection</source><creator>Malas, Tareq ; Ahmadia, Aron J. ; Brown, Jed ; Gunnels, John A. ; Keyes, David E.</creator><creatorcontrib>Malas, Tareq ; Ahmadia, Aron J. ; Brown, Jed ; Gunnels, John A. ; Keyes, David E.</creatorcontrib><description>Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer’s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU’s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7
×
speedup over the best previously published results.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/1094342012444795</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Applied sciences ; Assembly ; Cache ; Central processing units ; Computation ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Construction ; CPUs ; Energy efficiency ; Exact sciences and technology ; Integrated circuits ; Kernels ; Mathematical models ; Microprocessors ; Optimization ; Optimization techniques ; Partial differential equations ; Programming languages ; Simulation ; Software ; Studies ; Three dimensional</subject><ispartof>The international journal of high performance computing applications, 2013-05, Vol.27 (2), p.193-209</ispartof><rights>The Author(s) 2012</rights><rights>2014 INIST-CNRS</rights><rights>Copyright SAGE PUBLICATIONS, INC. May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a64e7f097bfeb08a32da99936a421f245d78435c57e8e33ff56869a4289e99243</citedby><cites>FETCH-LOGICAL-c405t-a64e7f097bfeb08a32da99936a421f245d78435c57e8e33ff56869a4289e99243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1094342012444795$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1094342012444795$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27321688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malas, Tareq</creatorcontrib><creatorcontrib>Ahmadia, Aron J.</creatorcontrib><creatorcontrib>Brown, Jed</creatorcontrib><creatorcontrib>Gunnels, John A.</creatorcontrib><creatorcontrib>Keyes, David E.</creatorcontrib><title>Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor</title><title>The international journal of high performance computing applications</title><description>Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer’s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU’s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7
×
speedup over the best previously published results.</description><subject>Applied sciences</subject><subject>Assembly</subject><subject>Cache</subject><subject>Central processing units</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Construction</subject><subject>CPUs</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Kernels</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Partial differential equations</subject><subject>Programming languages</subject><subject>Simulation</subject><subject>Software</subject><subject>Studies</subject><subject>Three dimensional</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFbvHgMieFlNsvk82qK1UGkPel7S7aRu3d3UZBfRv97UFpGCeErg_ebNzJskOSf4mhApbwjWLGMUE8oYk5ofJD0iGUmpYuIw_qOcbvTj5CSEFcZYsIz3Ejtdt2VdfpbNErUvgNbgrfO1aQpAzqLQejD1Rmy6GnxZmAq9gm-gCsg13xXjwSMaVB2gETRwM0Mz9w5-NkSMY7T2roAQnD9NjqypApzt3n7yfH_3NHxIJ9PReHg7SQuGeZsawUBarOXcwhwrk9GF0VpnwjBKLGV8IVUcu-ASFGSZtVwooaOoNGhNWdZPrra-sfNbB6HN6zIUUFWmAdeFPCYltZaCyv_RTHDCJaEkohd76Mp1vomLRIppqeJQOlJ4SxXeheDB5mtf1sZ_5ATnmxvl-zeKJZc7YxNitNbH3MvwUxenpEQoFbl0ywWzhF_N__L9AtkFms0</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Malas, Tareq</creator><creator>Ahmadia, Aron J.</creator><creator>Brown, Jed</creator><creator>Gunnels, John A.</creator><creator>Keyes, David E.</creator><general>SAGE Publications</general><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130501</creationdate><title>Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor</title><author>Malas, Tareq ; Ahmadia, Aron J. ; Brown, Jed ; Gunnels, John A. ; Keyes, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a64e7f097bfeb08a32da99936a421f245d78435c57e8e33ff56869a4289e99243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Assembly</topic><topic>Cache</topic><topic>Central processing units</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Construction</topic><topic>CPUs</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Kernels</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Partial differential equations</topic><topic>Programming languages</topic><topic>Simulation</topic><topic>Software</topic><topic>Studies</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malas, Tareq</creatorcontrib><creatorcontrib>Ahmadia, Aron J.</creatorcontrib><creatorcontrib>Brown, Jed</creatorcontrib><creatorcontrib>Gunnels, John A.</creatorcontrib><creatorcontrib>Keyes, David E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malas, Tareq</au><au>Ahmadia, Aron J.</au><au>Brown, Jed</au><au>Gunnels, John A.</au><au>Keyes, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>27</volume><issue>2</issue><spage>193</spage><epage>209</epage><pages>193-209</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer’s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU’s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7
×
speedup over the best previously published results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1094342012444795</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The international journal of high performance computing applications, 2013-05, Vol.27 (2), p.193-209 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1777997627 |
source | SAGE Journals; Alma/SFX Local Collection |
subjects | Applied sciences Assembly Cache Central processing units Computation Computer science control theory systems Computer systems and distributed systems. User interface Construction CPUs Energy efficiency Exact sciences and technology Integrated circuits Kernels Mathematical models Microprocessors Optimization Optimization techniques Partial differential equations Programming languages Simulation Software Studies Three dimensional |
title | Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20performance%20of%20streaming%20numerical%20kernels%20on%20the%20IBM%20Blue%20Gene/P%20PowerPC%20450%20processor&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Malas,%20Tareq&rft.date=2013-05-01&rft.volume=27&rft.issue=2&rft.spage=193&rft.epage=209&rft.pages=193-209&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/1094342012444795&rft_dat=%3Cproquest_cross%3E1365157121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349788439&rft_id=info:pmid/&rft_sage_id=10.1177_1094342012444795&rfr_iscdi=true |