A computer vision approach for automated analysis and classification of microstructural image data

[Display omitted] •A computer vision approach is used to compute microstructural fingerprints.•Using these fingerprints, microstructures can be classified with >80% accuracy.•Microstructural fingerprints form the basis for a visual image search engine. The ‘bag of visual features’ image represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2015-12, Vol.110, p.126-133
Hauptverfasser: DeCost, Brian L., Holm, Elizabeth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •A computer vision approach is used to compute microstructural fingerprints.•Using these fingerprints, microstructures can be classified with >80% accuracy.•Microstructural fingerprints form the basis for a visual image search engine. The ‘bag of visual features’ image representation was applied to create generic microstructural signatures that can be used to automatically find relationships in large and diverse microstructural image data sets. Using this representation, a support vector machine (SVM) was trained to classify microstructures into one of seven groups with greater than 80% accuracy over 5-fold cross validation. In addition, the bag of visual features was implemented as the basis for a visual search engine that determines the best matches for a query image in a database of microstructures. These novel applications demonstrate the potential and the limitations of computer vision concepts in microstructural science.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2015.08.011