Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6

•Modified Verhaar scheme has improved performance; 35% fewer compounds misclassified.•Modified Verhaar scheme correctly classifies 49% of compounds in test datasets.•A KNIME workflow improves the scheme further; 63% of compounds correctly classified.•Mechanistic QSAR models have been built from comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2015-11, Vol.139, p.146-154
Hauptverfasser: Ellison, Claire M., Madden, Judith C., Cronin, Mark T.D., Enoch, Steven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 146
container_title Chemosphere (Oxford)
container_volume 139
creator Ellison, Claire M.
Madden, Judith C.
Cronin, Mark T.D.
Enoch, Steven J.
description •Modified Verhaar scheme has improved performance; 35% fewer compounds misclassified.•Modified Verhaar scheme correctly classifies 49% of compounds in test datasets.•A KNIME workflow improves the scheme further; 63% of compounds correctly classified.•Mechanistic QSAR models have been built from compounds in the resultant categories. Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. These categories provide a mechanistic basis for grouping and any further predictive modelling. A computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work presented herein demonstrates how modifications to the implementation of Verhaar between version 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as outside of the domain of the model. Further amendments to the classification rules have been implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer compounds being classified as outside of the model domain, further improving the predictivity of the scheme. The utility of the modification described herein is demonstrated through building quality, mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds within specific mechanistic categories.
doi_str_mv 10.1016/j.chemosphere.2015.06.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777993021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653515006104</els_id><sourcerecordid>1777993021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-6498531e665e1fadf3e940c838c5d3d8fcaf5a24cfc2ea77b44733ed8a03c7503</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhS0EomnhFZDZsZnBHv-N2aGIn0iV2BS2luO5bhxlxqntidoVr45HaSuWXXnznXuu74fQR0paSqj8vG_dDsaYjztI0HaEipbIlhD9Cq1or3RDO92_RitCuGikYOICXea8J6SGhX6LLjpJdEc0X6G_m-kEuYRbW0KccPS47AD_gbSzNuG89AD2MeFjgiG4EqZbbN1cANu7uWYcLvE-uFAevuDNeEzxtBBPcJwyjttiwwQD9imO-CbelwSAT5Ba3LXyHXrj7SHD-8f3Cv3-_u1m_bO5_vVjs_563TiueWkk171gFKQUQL0dPAPNietZ78TAht4764XtuPOuA6vUlnPFGAy9JcwpQdgV-nSeW1e8m-uPzRiyg8PBThDnbKhSSmtGOvoClMteKcGXqfqMuhRzTuDNMYXRpgdDiVlUmb35T5VZVBkiTVVVsx8ea-btCMNz8slNBdZnAOpdTgGSyS7A5OppE7hihhheUPMPzN-tKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746877540</pqid></control><display><type>article</type><title>Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ellison, Claire M. ; Madden, Judith C. ; Cronin, Mark T.D. ; Enoch, Steven J.</creator><creatorcontrib>Ellison, Claire M. ; Madden, Judith C. ; Cronin, Mark T.D. ; Enoch, Steven J.</creatorcontrib><description>•Modified Verhaar scheme has improved performance; 35% fewer compounds misclassified.•Modified Verhaar scheme correctly classifies 49% of compounds in test datasets.•A KNIME workflow improves the scheme further; 63% of compounds correctly classified.•Mechanistic QSAR models have been built from compounds in the resultant categories. Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. These categories provide a mechanistic basis for grouping and any further predictive modelling. A computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work presented herein demonstrates how modifications to the implementation of Verhaar between version 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as outside of the domain of the model. Further amendments to the classification rules have been implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer compounds being classified as outside of the model domain, further improving the predictivity of the scheme. The utility of the modification described herein is demonstrated through building quality, mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds within specific mechanistic categories.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2015.06.009</identifier><identifier>PMID: 26092094</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Aquatic Organisms - drug effects ; Aquatic Organisms - growth &amp; development ; Aquatic toxicity ; Assessments ; Categories ; Category formation ; Chemosphere ; Classification ; Cyprinidae - growth &amp; development ; Forecasting ; Hazardous Substances - chemistry ; Hazardous Substances - toxicity ; Invertebrates ; Legislation ; Mathematical models ; Models, Theoretical ; QSAR ; Quantitative Structure-Activity Relationship ; Tetrahymena pyriformis - drug effects ; Tetrahymena pyriformis - growth &amp; development ; Toxicity ; Toxicity Tests, Acute ; Toxtree ; Verhaar ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - toxicity</subject><ispartof>Chemosphere (Oxford), 2015-11, Vol.139, p.146-154</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-6498531e665e1fadf3e940c838c5d3d8fcaf5a24cfc2ea77b44733ed8a03c7503</citedby><cites>FETCH-LOGICAL-c494t-6498531e665e1fadf3e940c838c5d3d8fcaf5a24cfc2ea77b44733ed8a03c7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2015.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26092094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellison, Claire M.</creatorcontrib><creatorcontrib>Madden, Judith C.</creatorcontrib><creatorcontrib>Cronin, Mark T.D.</creatorcontrib><creatorcontrib>Enoch, Steven J.</creatorcontrib><title>Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>•Modified Verhaar scheme has improved performance; 35% fewer compounds misclassified.•Modified Verhaar scheme correctly classifies 49% of compounds in test datasets.•A KNIME workflow improves the scheme further; 63% of compounds correctly classified.•Mechanistic QSAR models have been built from compounds in the resultant categories. Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. These categories provide a mechanistic basis for grouping and any further predictive modelling. A computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work presented herein demonstrates how modifications to the implementation of Verhaar between version 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as outside of the domain of the model. Further amendments to the classification rules have been implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer compounds being classified as outside of the model domain, further improving the predictivity of the scheme. The utility of the modification described herein is demonstrated through building quality, mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds within specific mechanistic categories.</description><subject>Animals</subject><subject>Aquatic Organisms - drug effects</subject><subject>Aquatic Organisms - growth &amp; development</subject><subject>Aquatic toxicity</subject><subject>Assessments</subject><subject>Categories</subject><subject>Category formation</subject><subject>Chemosphere</subject><subject>Classification</subject><subject>Cyprinidae - growth &amp; development</subject><subject>Forecasting</subject><subject>Hazardous Substances - chemistry</subject><subject>Hazardous Substances - toxicity</subject><subject>Invertebrates</subject><subject>Legislation</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>QSAR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Tetrahymena pyriformis - drug effects</subject><subject>Tetrahymena pyriformis - growth &amp; development</subject><subject>Toxicity</subject><subject>Toxicity Tests, Acute</subject><subject>Toxtree</subject><subject>Verhaar</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1uEzEUhS0EomnhFZDZsZnBHv-N2aGIn0iV2BS2luO5bhxlxqntidoVr45HaSuWXXnznXuu74fQR0paSqj8vG_dDsaYjztI0HaEipbIlhD9Cq1or3RDO92_RitCuGikYOICXea8J6SGhX6LLjpJdEc0X6G_m-kEuYRbW0KccPS47AD_gbSzNuG89AD2MeFjgiG4EqZbbN1cANu7uWYcLvE-uFAevuDNeEzxtBBPcJwyjttiwwQD9imO-CbelwSAT5Ba3LXyHXrj7SHD-8f3Cv3-_u1m_bO5_vVjs_563TiueWkk171gFKQUQL0dPAPNietZ78TAht4764XtuPOuA6vUlnPFGAy9JcwpQdgV-nSeW1e8m-uPzRiyg8PBThDnbKhSSmtGOvoClMteKcGXqfqMuhRzTuDNMYXRpgdDiVlUmb35T5VZVBkiTVVVsx8ea-btCMNz8slNBdZnAOpdTgGSyS7A5OppE7hihhheUPMPzN-tKg</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Ellison, Claire M.</creator><creator>Madden, Judith C.</creator><creator>Cronin, Mark T.D.</creator><creator>Enoch, Steven J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201511</creationdate><title>Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6</title><author>Ellison, Claire M. ; Madden, Judith C. ; Cronin, Mark T.D. ; Enoch, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-6498531e665e1fadf3e940c838c5d3d8fcaf5a24cfc2ea77b44733ed8a03c7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Aquatic Organisms - drug effects</topic><topic>Aquatic Organisms - growth &amp; development</topic><topic>Aquatic toxicity</topic><topic>Assessments</topic><topic>Categories</topic><topic>Category formation</topic><topic>Chemosphere</topic><topic>Classification</topic><topic>Cyprinidae - growth &amp; development</topic><topic>Forecasting</topic><topic>Hazardous Substances - chemistry</topic><topic>Hazardous Substances - toxicity</topic><topic>Invertebrates</topic><topic>Legislation</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>QSAR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Tetrahymena pyriformis - drug effects</topic><topic>Tetrahymena pyriformis - growth &amp; development</topic><topic>Toxicity</topic><topic>Toxicity Tests, Acute</topic><topic>Toxtree</topic><topic>Verhaar</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellison, Claire M.</creatorcontrib><creatorcontrib>Madden, Judith C.</creatorcontrib><creatorcontrib>Cronin, Mark T.D.</creatorcontrib><creatorcontrib>Enoch, Steven J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellison, Claire M.</au><au>Madden, Judith C.</au><au>Cronin, Mark T.D.</au><au>Enoch, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2015-11</date><risdate>2015</risdate><volume>139</volume><spage>146</spage><epage>154</epage><pages>146-154</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>•Modified Verhaar scheme has improved performance; 35% fewer compounds misclassified.•Modified Verhaar scheme correctly classifies 49% of compounds in test datasets.•A KNIME workflow improves the scheme further; 63% of compounds correctly classified.•Mechanistic QSAR models have been built from compounds in the resultant categories. Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. These categories provide a mechanistic basis for grouping and any further predictive modelling. A computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work presented herein demonstrates how modifications to the implementation of Verhaar between version 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as outside of the domain of the model. Further amendments to the classification rules have been implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer compounds being classified as outside of the model domain, further improving the predictivity of the scheme. The utility of the modification described herein is demonstrated through building quality, mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds within specific mechanistic categories.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26092094</pmid><doi>10.1016/j.chemosphere.2015.06.009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2015-11, Vol.139, p.146-154
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1777993021
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Aquatic Organisms - drug effects
Aquatic Organisms - growth & development
Aquatic toxicity
Assessments
Categories
Category formation
Chemosphere
Classification
Cyprinidae - growth & development
Forecasting
Hazardous Substances - chemistry
Hazardous Substances - toxicity
Invertebrates
Legislation
Mathematical models
Models, Theoretical
QSAR
Quantitative Structure-Activity Relationship
Tetrahymena pyriformis - drug effects
Tetrahymena pyriformis - growth & development
Toxicity
Toxicity Tests, Acute
Toxtree
Verhaar
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - toxicity
title Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Verhaar%20scheme%20for%20predicting%20acute%20aquatic%20toxicity:%20Improving%20predictions%20obtained%20from%20Toxtree%20ver.%202.6&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Ellison,%20Claire%20M.&rft.date=2015-11&rft.volume=139&rft.spage=146&rft.epage=154&rft.pages=146-154&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2015.06.009&rft_dat=%3Cproquest_cross%3E1777993021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746877540&rft_id=info:pmid/26092094&rft_els_id=S0045653515006104&rfr_iscdi=true