Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex

Focal brain infarcts are surrounded by extended perilesional zones that comprise the partially ischemic penumbra but also completely non‐ischemic cortex of the remote ipsilateral hemisphere. To delineate the impact of lesion‐associated vs. remote processes on transcriptional programming after focal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2004-04, Vol.19 (7), p.1708-1720
Hauptverfasser: Küry, Patrick, Schroeter, Michael, Jander, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
rat
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1720
container_issue 7
container_start_page 1708
container_title The European journal of neuroscience
container_volume 19
creator Küry, Patrick
Schroeter, Michael
Jander, Sebastian
description Focal brain infarcts are surrounded by extended perilesional zones that comprise the partially ischemic penumbra but also completely non‐ischemic cortex of the remote ipsilateral hemisphere. To delineate the impact of lesion‐associated vs. remote processes on transcriptional programming after focal ischemia, we used cDNA array analysis, quantitative real‐time polymerase chain reaction and immunohistochemistry in the photothrombosis model of circumscribed cortical ischemia in rats. At an early stage of 4 h after ischemia, gene induction occurred to a similar extent in the ischemic infarct and remote non‐ischemic cortex of the ipsilateral hemisphere. Among the genes induced in non‐ischemic cortex we found the NGF‐inducible genes PC3, VGF and Arc, the transcriptional regulators IκB‐α and Stat3, and the β‐chemokine MIP‐1α (CCL3). At 3 days, the spatial pattern of gene expression had changed dramatically with brain fatty acid‐binding protein as the only gene significantly induced in non‐ischemic ipsilateral cortex. In contrast, numerous genes were exclusively regulated at the lesion site, comprising genes involved in cell cycle regulation, proteolysis, apoptosis, lipid homeostasis and anti‐inflammatory counter‐regulation. Cortical spreading depression was identified as the main mechanism underlying gene induction in remote non‐ischemic cortex. Our data demonstrate a dynamic spatiotemporal pattern of gene induction, which may contribute to delayed progression of damage or, alternatively, mediate neuroprotection, tissue remodeling and functional compensation.
doi_str_mv 10.1111/j.1460-9568.2004.03226.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17778742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17778742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4656-698721fd501cf05f37283dc0e5a19a813f6f1e7161ac42f05cca70dfe2eebb793</originalsourceid><addsrcrecordid>eNqNkctu3CAUhlHVqJmkeYWIVXd2wDYXV-qiinLVaLLI5LJDGB8rTG3jgqedPEDeuzgzmmzLBg7n-3_QfxDClKQ0rrNVSgtOkpJxmWaEFCnJs4ynm09otm98RjNSsjyRlD8foqMQVoQQyQv2BR1SRoRkBZuht6XXfTDeDqN1vW6xhzC4PgAeHTbWm3U3dSuosXF-tCYilde2xzaYF-is_o7DoKN4hG5wPrZjNYLvA_6ADP4T0mjdRQr3rk_295MpbL6ig0a3AU52-zF6uLxYnl8n87urm_Of88QUnPGEl1JktKkZoaYhrMlFJvPaEGCallrSvOENBUE51abIImGMFqRuIAOoKlHmx-jb1nfw7vcawqi6-BNoW92DWwdFhRBSFFkE5RY03oXgoVGDt532r4oSNY1ArdSUtJqSVtMI1PsI1CZKT3dvrKsO6g_hLvMI_NgCf20Lr_9trC5uF9Mp6pOt3oYY3V6v_S_FRS6Yelpcqfvrx0u-nIr8Hy1-qDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17778742</pqid></control><display><type>article</type><title>Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Küry, Patrick ; Schroeter, Michael ; Jander, Sebastian</creator><creatorcontrib>Küry, Patrick ; Schroeter, Michael ; Jander, Sebastian</creatorcontrib><description>Focal brain infarcts are surrounded by extended perilesional zones that comprise the partially ischemic penumbra but also completely non‐ischemic cortex of the remote ipsilateral hemisphere. To delineate the impact of lesion‐associated vs. remote processes on transcriptional programming after focal ischemia, we used cDNA array analysis, quantitative real‐time polymerase chain reaction and immunohistochemistry in the photothrombosis model of circumscribed cortical ischemia in rats. At an early stage of 4 h after ischemia, gene induction occurred to a similar extent in the ischemic infarct and remote non‐ischemic cortex of the ipsilateral hemisphere. Among the genes induced in non‐ischemic cortex we found the NGF‐inducible genes PC3, VGF and Arc, the transcriptional regulators IκB‐α and Stat3, and the β‐chemokine MIP‐1α (CCL3). At 3 days, the spatial pattern of gene expression had changed dramatically with brain fatty acid‐binding protein as the only gene significantly induced in non‐ischemic ipsilateral cortex. In contrast, numerous genes were exclusively regulated at the lesion site, comprising genes involved in cell cycle regulation, proteolysis, apoptosis, lipid homeostasis and anti‐inflammatory counter‐regulation. Cortical spreading depression was identified as the main mechanism underlying gene induction in remote non‐ischemic cortex. Our data demonstrate a dynamic spatiotemporal pattern of gene induction, which may contribute to delayed progression of damage or, alternatively, mediate neuroprotection, tissue remodeling and functional compensation.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2004.03226.x</identifier><identifier>PMID: 15078545</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science, Ltd</publisher><subject>AIDS-Related Complex - genetics ; AIDS-Related Complex - metabolism ; Animals ; Brain Ischemia - complications ; Brain Ischemia - genetics ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cathepsin K ; Cathepsins - genetics ; Cathepsins - metabolism ; Cdc20 Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Cerebral Infarction - etiology ; Cerebral Infarction - genetics ; cortical spreading depression ; Cortical Spreading Depression - drug effects ; Dizocilpine Maleate - pharmacology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug Interactions ; Excitatory Amino Acid Antagonists - pharmacology ; Fatty Acid-Binding Protein 7 ; Fatty Acid-Binding Proteins ; Functional Laterality - genetics ; Functional Laterality - physiology ; gene expression profiling ; Gene Expression Profiling - methods ; Gene Expression Regulation - drug effects ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Immunohistochemistry - methods ; Male ; Nerve Tissue Proteins ; neuroprotection ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Oligonucleotide Array Sequence Analysis - methods ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; plasticity ; Potassium Chloride - pharmacology ; Proprotein Convertase 1 - genetics ; Proprotein Convertase 1 - metabolism ; rat ; Rats ; Rats, Wistar ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - biosynthesis ; STAT3 Transcription Factor ; Time Factors ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcriptional Activation</subject><ispartof>The European journal of neuroscience, 2004-04, Vol.19 (7), p.1708-1720</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4656-698721fd501cf05f37283dc0e5a19a813f6f1e7161ac42f05cca70dfe2eebb793</citedby><cites>FETCH-LOGICAL-c4656-698721fd501cf05f37283dc0e5a19a813f6f1e7161ac42f05cca70dfe2eebb793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2004.03226.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2004.03226.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15078545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Küry, Patrick</creatorcontrib><creatorcontrib>Schroeter, Michael</creatorcontrib><creatorcontrib>Jander, Sebastian</creatorcontrib><title>Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Focal brain infarcts are surrounded by extended perilesional zones that comprise the partially ischemic penumbra but also completely non‐ischemic cortex of the remote ipsilateral hemisphere. To delineate the impact of lesion‐associated vs. remote processes on transcriptional programming after focal ischemia, we used cDNA array analysis, quantitative real‐time polymerase chain reaction and immunohistochemistry in the photothrombosis model of circumscribed cortical ischemia in rats. At an early stage of 4 h after ischemia, gene induction occurred to a similar extent in the ischemic infarct and remote non‐ischemic cortex of the ipsilateral hemisphere. Among the genes induced in non‐ischemic cortex we found the NGF‐inducible genes PC3, VGF and Arc, the transcriptional regulators IκB‐α and Stat3, and the β‐chemokine MIP‐1α (CCL3). At 3 days, the spatial pattern of gene expression had changed dramatically with brain fatty acid‐binding protein as the only gene significantly induced in non‐ischemic ipsilateral cortex. In contrast, numerous genes were exclusively regulated at the lesion site, comprising genes involved in cell cycle regulation, proteolysis, apoptosis, lipid homeostasis and anti‐inflammatory counter‐regulation. Cortical spreading depression was identified as the main mechanism underlying gene induction in remote non‐ischemic cortex. Our data demonstrate a dynamic spatiotemporal pattern of gene induction, which may contribute to delayed progression of damage or, alternatively, mediate neuroprotection, tissue remodeling and functional compensation.</description><subject>AIDS-Related Complex - genetics</subject><subject>AIDS-Related Complex - metabolism</subject><subject>Animals</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - genetics</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cathepsin K</subject><subject>Cathepsins - genetics</subject><subject>Cathepsins - metabolism</subject><subject>Cdc20 Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebral Infarction - etiology</subject><subject>Cerebral Infarction - genetics</subject><subject>cortical spreading depression</subject><subject>Cortical Spreading Depression - drug effects</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug Interactions</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fatty Acid-Binding Protein 7</subject><subject>Fatty Acid-Binding Proteins</subject><subject>Functional Laterality - genetics</subject><subject>Functional Laterality - physiology</subject><subject>gene expression profiling</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - drug effects</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Immunohistochemistry - methods</subject><subject>Male</subject><subject>Nerve Tissue Proteins</subject><subject>neuroprotection</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>plasticity</subject><subject>Potassium Chloride - pharmacology</subject><subject>Proprotein Convertase 1 - genetics</subject><subject>Proprotein Convertase 1 - metabolism</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Cytoplasmic and Nuclear</subject><subject>Receptors, Steroid</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - biosynthesis</subject><subject>STAT3 Transcription Factor</subject><subject>Time Factors</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu3CAUhlHVqJmkeYWIVXd2wDYXV-qiinLVaLLI5LJDGB8rTG3jgqedPEDeuzgzmmzLBg7n-3_QfxDClKQ0rrNVSgtOkpJxmWaEFCnJs4ynm09otm98RjNSsjyRlD8foqMQVoQQyQv2BR1SRoRkBZuht6XXfTDeDqN1vW6xhzC4PgAeHTbWm3U3dSuosXF-tCYilde2xzaYF-is_o7DoKN4hG5wPrZjNYLvA_6ADP4T0mjdRQr3rk_295MpbL6ig0a3AU52-zF6uLxYnl8n87urm_Of88QUnPGEl1JktKkZoaYhrMlFJvPaEGCallrSvOENBUE51abIImGMFqRuIAOoKlHmx-jb1nfw7vcawqi6-BNoW92DWwdFhRBSFFkE5RY03oXgoVGDt532r4oSNY1ArdSUtJqSVtMI1PsI1CZKT3dvrKsO6g_hLvMI_NgCf20Lr_9trC5uF9Mp6pOt3oYY3V6v_S_FRS6Yelpcqfvrx0u-nIr8Hy1-qDI</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Küry, Patrick</creator><creator>Schroeter, Michael</creator><creator>Jander, Sebastian</creator><general>Blackwell Science, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200404</creationdate><title>Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex</title><author>Küry, Patrick ; Schroeter, Michael ; Jander, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4656-698721fd501cf05f37283dc0e5a19a813f6f1e7161ac42f05cca70dfe2eebb793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>AIDS-Related Complex - genetics</topic><topic>AIDS-Related Complex - metabolism</topic><topic>Animals</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - genetics</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cathepsin K</topic><topic>Cathepsins - genetics</topic><topic>Cathepsins - metabolism</topic><topic>Cdc20 Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebral Infarction - etiology</topic><topic>Cerebral Infarction - genetics</topic><topic>cortical spreading depression</topic><topic>Cortical Spreading Depression - drug effects</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug Interactions</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fatty Acid-Binding Protein 7</topic><topic>Fatty Acid-Binding Proteins</topic><topic>Functional Laterality - genetics</topic><topic>Functional Laterality - physiology</topic><topic>gene expression profiling</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - drug effects</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Immunohistochemistry - methods</topic><topic>Male</topic><topic>Nerve Tissue Proteins</topic><topic>neuroprotection</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>plasticity</topic><topic>Potassium Chloride - pharmacology</topic><topic>Proprotein Convertase 1 - genetics</topic><topic>Proprotein Convertase 1 - metabolism</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Cytoplasmic and Nuclear</topic><topic>Receptors, Steroid</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - biosynthesis</topic><topic>STAT3 Transcription Factor</topic><topic>Time Factors</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küry, Patrick</creatorcontrib><creatorcontrib>Schroeter, Michael</creatorcontrib><creatorcontrib>Jander, Sebastian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küry, Patrick</au><au>Schroeter, Michael</au><au>Jander, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2004-04</date><risdate>2004</risdate><volume>19</volume><issue>7</issue><spage>1708</spage><epage>1720</epage><pages>1708-1720</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Focal brain infarcts are surrounded by extended perilesional zones that comprise the partially ischemic penumbra but also completely non‐ischemic cortex of the remote ipsilateral hemisphere. To delineate the impact of lesion‐associated vs. remote processes on transcriptional programming after focal ischemia, we used cDNA array analysis, quantitative real‐time polymerase chain reaction and immunohistochemistry in the photothrombosis model of circumscribed cortical ischemia in rats. At an early stage of 4 h after ischemia, gene induction occurred to a similar extent in the ischemic infarct and remote non‐ischemic cortex of the ipsilateral hemisphere. Among the genes induced in non‐ischemic cortex we found the NGF‐inducible genes PC3, VGF and Arc, the transcriptional regulators IκB‐α and Stat3, and the β‐chemokine MIP‐1α (CCL3). At 3 days, the spatial pattern of gene expression had changed dramatically with brain fatty acid‐binding protein as the only gene significantly induced in non‐ischemic ipsilateral cortex. In contrast, numerous genes were exclusively regulated at the lesion site, comprising genes involved in cell cycle regulation, proteolysis, apoptosis, lipid homeostasis and anti‐inflammatory counter‐regulation. Cortical spreading depression was identified as the main mechanism underlying gene induction in remote non‐ischemic cortex. Our data demonstrate a dynamic spatiotemporal pattern of gene induction, which may contribute to delayed progression of damage or, alternatively, mediate neuroprotection, tissue remodeling and functional compensation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science, Ltd</pub><pmid>15078545</pmid><doi>10.1111/j.1460-9568.2004.03226.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2004-04, Vol.19 (7), p.1708-1720
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_17778742
source MEDLINE; Wiley Journals
subjects AIDS-Related Complex - genetics
AIDS-Related Complex - metabolism
Animals
Brain Ischemia - complications
Brain Ischemia - genetics
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cathepsin K
Cathepsins - genetics
Cathepsins - metabolism
Cdc20 Proteins
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cerebral Cortex - metabolism
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Cerebral Infarction - etiology
Cerebral Infarction - genetics
cortical spreading depression
Cortical Spreading Depression - drug effects
Dizocilpine Maleate - pharmacology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug Interactions
Excitatory Amino Acid Antagonists - pharmacology
Fatty Acid-Binding Protein 7
Fatty Acid-Binding Proteins
Functional Laterality - genetics
Functional Laterality - physiology
gene expression profiling
Gene Expression Profiling - methods
Gene Expression Regulation - drug effects
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Immunohistochemistry - methods
Male
Nerve Tissue Proteins
neuroprotection
Nuclear Receptor Subfamily 4, Group A, Member 1
Oligonucleotide Array Sequence Analysis - methods
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
plasticity
Potassium Chloride - pharmacology
Proprotein Convertase 1 - genetics
Proprotein Convertase 1 - metabolism
rat
Rats
Rats, Wistar
Receptors, Cytoplasmic and Nuclear
Receptors, Steroid
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - biosynthesis
STAT3 Transcription Factor
Time Factors
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
Transcriptional Activation
title Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20response%20to%20circumscribed%20cortical%20brain%20ischemia:%20spatiotemporal%20patterns%20in%20ischemic%20vs.%20remote%20non-ischemic%20cortex&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=K%C3%BCry,%20Patrick&rft.date=2004-04&rft.volume=19&rft.issue=7&rft.spage=1708&rft.epage=1720&rft.pages=1708-1720&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2004.03226.x&rft_dat=%3Cproquest_cross%3E17778742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17778742&rft_id=info:pmid/15078545&rfr_iscdi=true