Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs
A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the ca...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-02, Vol.280 (5), p.3838-3846 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3846 |
---|---|
container_issue | 5 |
container_start_page | 3838 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | Deval, Jérôme Alvarez, Karine Selmi, Boulbaba Bermond, Marielle Boretto, Joëlle Guerreiro, Catherine Mulard, Laurence Canard, Bruno |
description | A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog. |
doi_str_mv | 10.1074/jbc.M411559200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17772932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820762575</els_id><sourcerecordid>17772932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvClSPyiVsW_0lIfCwF2pVakGCLuFmOM9m4SuzUE1faB-IBeBGeCcOu1BNzGc3o933SzEfIK87WnNXl27vWrm9KzqtKCcaekBVnjSxkxX88JSvGBC-UqJoTcop4x3KVij8nJxmvmKzVivy8ATsY73Bxlm48ut2wIHV-CXQZgH5L8xwB0QVPQ08_xLSjXwEzbrwF2u7pVZqMp5tpSj500DvrwNs9_e5iQrrdz0B5VjxARKDbaDza6ObF5OkWnd_R37-K9yHvwzwEnAezAP2c7AgBXQf03Jsx7PAFedabEeHlsZ-R208ftxdXxfWXy83F-XVhSy6XorWlEdJUpqv6d9A0taoaI0TZKGWVtUL2poe6bSCfD4ZXipdSKGZYlqiOc3lG3hx85xjuE-CiJ4cWxtF4CAk1r-taKCkyuD6ANgbECL2eo5tM3GvO9N9gdA5GPwaTBa-PzqmdoHvEj0lkoDkAkO97cBA1_nsldC6CXXQX3P-8_wBID6Cs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17772932</pqid></control><display><type>article</type><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</creator><creatorcontrib>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</creatorcontrib><description>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M411559200</identifier><identifier>PMID: 15550379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Binding Sites ; Dideoxynucleosides - pharmacology ; Drug Design ; Drug Resistance, Viral - drug effects ; HIV Reverse Transcriptase - chemistry ; HIV Reverse Transcriptase - genetics ; HIV Reverse Transcriptase - metabolism ; HIV-1 - drug effects ; HIV-1 - enzymology ; Human immunodeficiency virus 1 ; Phosphorylation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2005-02, Vol.280 (5), p.3838-3846</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</citedby><cites>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15550379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deval, Jérôme</creatorcontrib><creatorcontrib>Alvarez, Karine</creatorcontrib><creatorcontrib>Selmi, Boulbaba</creatorcontrib><creatorcontrib>Bermond, Marielle</creatorcontrib><creatorcontrib>Boretto, Joëlle</creatorcontrib><creatorcontrib>Guerreiro, Catherine</creatorcontrib><creatorcontrib>Mulard, Laurence</creatorcontrib><creatorcontrib>Canard, Bruno</creatorcontrib><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</description><subject>Amino Acid Substitution</subject><subject>Binding Sites</subject><subject>Dideoxynucleosides - pharmacology</subject><subject>Drug Design</subject><subject>Drug Resistance, Viral - drug effects</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>HIV Reverse Transcriptase - genetics</subject><subject>HIV Reverse Transcriptase - metabolism</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus 1</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQxi0EotvClSPyiVsW_0lIfCwF2pVakGCLuFmOM9m4SuzUE1faB-IBeBGeCcOu1BNzGc3o933SzEfIK87WnNXl27vWrm9KzqtKCcaekBVnjSxkxX88JSvGBC-UqJoTcop4x3KVij8nJxmvmKzVivy8ATsY73Bxlm48ut2wIHV-CXQZgH5L8xwB0QVPQ08_xLSjXwEzbrwF2u7pVZqMp5tpSj500DvrwNs9_e5iQrrdz0B5VjxARKDbaDza6ObF5OkWnd_R37-K9yHvwzwEnAezAP2c7AgBXQf03Jsx7PAFedabEeHlsZ-R208ftxdXxfWXy83F-XVhSy6XorWlEdJUpqv6d9A0taoaI0TZKGWVtUL2poe6bSCfD4ZXipdSKGZYlqiOc3lG3hx85xjuE-CiJ4cWxtF4CAk1r-taKCkyuD6ANgbECL2eo5tM3GvO9N9gdA5GPwaTBa-PzqmdoHvEj0lkoDkAkO97cBA1_nsldC6CXXQX3P-8_wBID6Cs</recordid><startdate>20050204</startdate><enddate>20050204</enddate><creator>Deval, Jérôme</creator><creator>Alvarez, Karine</creator><creator>Selmi, Boulbaba</creator><creator>Bermond, Marielle</creator><creator>Boretto, Joëlle</creator><creator>Guerreiro, Catherine</creator><creator>Mulard, Laurence</creator><creator>Canard, Bruno</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050204</creationdate><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><author>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Substitution</topic><topic>Binding Sites</topic><topic>Dideoxynucleosides - pharmacology</topic><topic>Drug Design</topic><topic>Drug Resistance, Viral - drug effects</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>HIV Reverse Transcriptase - genetics</topic><topic>HIV Reverse Transcriptase - metabolism</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus 1</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deval, Jérôme</creatorcontrib><creatorcontrib>Alvarez, Karine</creatorcontrib><creatorcontrib>Selmi, Boulbaba</creatorcontrib><creatorcontrib>Bermond, Marielle</creatorcontrib><creatorcontrib>Boretto, Joëlle</creatorcontrib><creatorcontrib>Guerreiro, Catherine</creatorcontrib><creatorcontrib>Mulard, Laurence</creatorcontrib><creatorcontrib>Canard, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deval, Jérôme</au><au>Alvarez, Karine</au><au>Selmi, Boulbaba</au><au>Bermond, Marielle</au><au>Boretto, Joëlle</au><au>Guerreiro, Catherine</au><au>Mulard, Laurence</au><au>Canard, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-02-04</date><risdate>2005</risdate><volume>280</volume><issue>5</issue><spage>3838</spage><epage>3846</epage><pages>3838-3846</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15550379</pmid><doi>10.1074/jbc.M411559200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-02, Vol.280 (5), p.3838-3846 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_17772932 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Substitution Binding Sites Dideoxynucleosides - pharmacology Drug Design Drug Resistance, Viral - drug effects HIV Reverse Transcriptase - chemistry HIV Reverse Transcriptase - genetics HIV Reverse Transcriptase - metabolism HIV-1 - drug effects HIV-1 - enzymology Human immunodeficiency virus 1 Phosphorylation Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism |
title | Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Insights%20into%20the%20Suppression%20of%20Drug%20Resistance%20by%20Human%20Immunodeficiency%20Virus%20Type%201%20Reverse%20Transcriptase%20Using%20%CE%B1-Boranophosphate%20Nucleoside%20Analogs&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Deval,%20J%C3%A9r%C3%B4me&rft.date=2005-02-04&rft.volume=280&rft.issue=5&rft.spage=3838&rft.epage=3846&rft.pages=3838-3846&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M411559200&rft_dat=%3Cproquest_cross%3E17772932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17772932&rft_id=info:pmid/15550379&rft_els_id=S0021925820762575&rfr_iscdi=true |