Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs

A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-02, Vol.280 (5), p.3838-3846
Hauptverfasser: Deval, Jérôme, Alvarez, Karine, Selmi, Boulbaba, Bermond, Marielle, Boretto, Joëlle, Guerreiro, Catherine, Mulard, Laurence, Canard, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3846
container_issue 5
container_start_page 3838
container_title The Journal of biological chemistry
container_volume 280
creator Deval, Jérôme
Alvarez, Karine
Selmi, Boulbaba
Bermond, Marielle
Boretto, Joëlle
Guerreiro, Catherine
Mulard, Laurence
Canard, Bruno
description A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.
doi_str_mv 10.1074/jbc.M411559200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17772932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820762575</els_id><sourcerecordid>17772932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvClSPyiVsW_0lIfCwF2pVakGCLuFmOM9m4SuzUE1faB-IBeBGeCcOu1BNzGc3o933SzEfIK87WnNXl27vWrm9KzqtKCcaekBVnjSxkxX88JSvGBC-UqJoTcop4x3KVij8nJxmvmKzVivy8ATsY73Bxlm48ut2wIHV-CXQZgH5L8xwB0QVPQ08_xLSjXwEzbrwF2u7pVZqMp5tpSj500DvrwNs9_e5iQrrdz0B5VjxARKDbaDza6ObF5OkWnd_R37-K9yHvwzwEnAezAP2c7AgBXQf03Jsx7PAFedabEeHlsZ-R208ftxdXxfWXy83F-XVhSy6XorWlEdJUpqv6d9A0taoaI0TZKGWVtUL2poe6bSCfD4ZXipdSKGZYlqiOc3lG3hx85xjuE-CiJ4cWxtF4CAk1r-taKCkyuD6ANgbECL2eo5tM3GvO9N9gdA5GPwaTBa-PzqmdoHvEj0lkoDkAkO97cBA1_nsldC6CXXQX3P-8_wBID6Cs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17772932</pqid></control><display><type>article</type><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</creator><creatorcontrib>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</creatorcontrib><description>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M411559200</identifier><identifier>PMID: 15550379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Binding Sites ; Dideoxynucleosides - pharmacology ; Drug Design ; Drug Resistance, Viral - drug effects ; HIV Reverse Transcriptase - chemistry ; HIV Reverse Transcriptase - genetics ; HIV Reverse Transcriptase - metabolism ; HIV-1 - drug effects ; HIV-1 - enzymology ; Human immunodeficiency virus 1 ; Phosphorylation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2005-02, Vol.280 (5), p.3838-3846</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</citedby><cites>FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15550379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deval, Jérôme</creatorcontrib><creatorcontrib>Alvarez, Karine</creatorcontrib><creatorcontrib>Selmi, Boulbaba</creatorcontrib><creatorcontrib>Bermond, Marielle</creatorcontrib><creatorcontrib>Boretto, Joëlle</creatorcontrib><creatorcontrib>Guerreiro, Catherine</creatorcontrib><creatorcontrib>Mulard, Laurence</creatorcontrib><creatorcontrib>Canard, Bruno</creatorcontrib><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</description><subject>Amino Acid Substitution</subject><subject>Binding Sites</subject><subject>Dideoxynucleosides - pharmacology</subject><subject>Drug Design</subject><subject>Drug Resistance, Viral - drug effects</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>HIV Reverse Transcriptase - genetics</subject><subject>HIV Reverse Transcriptase - metabolism</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus 1</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQxi0EotvClSPyiVsW_0lIfCwF2pVakGCLuFmOM9m4SuzUE1faB-IBeBGeCcOu1BNzGc3o933SzEfIK87WnNXl27vWrm9KzqtKCcaekBVnjSxkxX88JSvGBC-UqJoTcop4x3KVij8nJxmvmKzVivy8ATsY73Bxlm48ut2wIHV-CXQZgH5L8xwB0QVPQ08_xLSjXwEzbrwF2u7pVZqMp5tpSj500DvrwNs9_e5iQrrdz0B5VjxARKDbaDza6ObF5OkWnd_R37-K9yHvwzwEnAezAP2c7AgBXQf03Jsx7PAFedabEeHlsZ-R208ftxdXxfWXy83F-XVhSy6XorWlEdJUpqv6d9A0taoaI0TZKGWVtUL2poe6bSCfD4ZXipdSKGZYlqiOc3lG3hx85xjuE-CiJ4cWxtF4CAk1r-taKCkyuD6ANgbECL2eo5tM3GvO9N9gdA5GPwaTBa-PzqmdoHvEj0lkoDkAkO97cBA1_nsldC6CXXQX3P-8_wBID6Cs</recordid><startdate>20050204</startdate><enddate>20050204</enddate><creator>Deval, Jérôme</creator><creator>Alvarez, Karine</creator><creator>Selmi, Boulbaba</creator><creator>Bermond, Marielle</creator><creator>Boretto, Joëlle</creator><creator>Guerreiro, Catherine</creator><creator>Mulard, Laurence</creator><creator>Canard, Bruno</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050204</creationdate><title>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</title><author>Deval, Jérôme ; Alvarez, Karine ; Selmi, Boulbaba ; Bermond, Marielle ; Boretto, Joëlle ; Guerreiro, Catherine ; Mulard, Laurence ; Canard, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-bc4a23a5ad5f6e887958a224899c9cc23fafe7b8e555ea159143290a0a5a9d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Substitution</topic><topic>Binding Sites</topic><topic>Dideoxynucleosides - pharmacology</topic><topic>Drug Design</topic><topic>Drug Resistance, Viral - drug effects</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>HIV Reverse Transcriptase - genetics</topic><topic>HIV Reverse Transcriptase - metabolism</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus 1</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deval, Jérôme</creatorcontrib><creatorcontrib>Alvarez, Karine</creatorcontrib><creatorcontrib>Selmi, Boulbaba</creatorcontrib><creatorcontrib>Bermond, Marielle</creatorcontrib><creatorcontrib>Boretto, Joëlle</creatorcontrib><creatorcontrib>Guerreiro, Catherine</creatorcontrib><creatorcontrib>Mulard, Laurence</creatorcontrib><creatorcontrib>Canard, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deval, Jérôme</au><au>Alvarez, Karine</au><au>Selmi, Boulbaba</au><au>Bermond, Marielle</au><au>Boretto, Joëlle</au><au>Guerreiro, Catherine</au><au>Mulard, Laurence</au><au>Canard, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-02-04</date><risdate>2005</risdate><volume>280</volume><issue>5</issue><spage>3838</spage><epage>3846</epage><pages>3838-3846</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that α-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3–5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various α-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the ∼100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that α-boranophosphate nucleoside analogs enhance 3–8-fold the binding of Mg2+ ions to the active site of the RT·DNA·dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15550379</pmid><doi>10.1074/jbc.M411559200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2005-02, Vol.280 (5), p.3838-3846
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_17772932
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Substitution
Binding Sites
Dideoxynucleosides - pharmacology
Drug Design
Drug Resistance, Viral - drug effects
HIV Reverse Transcriptase - chemistry
HIV Reverse Transcriptase - genetics
HIV Reverse Transcriptase - metabolism
HIV-1 - drug effects
HIV-1 - enzymology
Human immunodeficiency virus 1
Phosphorylation
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
title Mechanistic Insights into the Suppression of Drug Resistance by Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using α-Boranophosphate Nucleoside Analogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Insights%20into%20the%20Suppression%20of%20Drug%20Resistance%20by%20Human%20Immunodeficiency%20Virus%20Type%201%20Reverse%20Transcriptase%20Using%20%CE%B1-Boranophosphate%20Nucleoside%20Analogs&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Deval,%20J%C3%A9r%C3%B4me&rft.date=2005-02-04&rft.volume=280&rft.issue=5&rft.spage=3838&rft.epage=3846&rft.pages=3838-3846&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M411559200&rft_dat=%3Cproquest_cross%3E17772932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17772932&rft_id=info:pmid/15550379&rft_els_id=S0021925820762575&rfr_iscdi=true