An expert model for the prediction of water gases thermodynamic properties

Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In the current research a new method based on artificial neural network (ANN) was applied for the prediction of water gases thermodynamic properties. The required data were coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2011-05, Vol.29 (1-3), p.285-293
Hauptverfasser: Hosseini, S.M., Parvizian, F., Moghadassi, A.R., Sharifi, A., Adimi, M., Hashemi, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 1-3
container_start_page 285
container_title Desalination and water treatment
container_volume 29
creator Hosseini, S.M.
Parvizian, F.
Moghadassi, A.R.
Sharifi, A.
Adimi, M.
Hashemi, S.J.
description Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In the current research a new method based on artificial neural network (ANN) was applied for the prediction of water gases thermodynamic properties. The required data were collected and after pre-treating was used for training of ANN. Also the accuracy and trend stability of the trained networks were tested by it generalization ability in predicting of unseen data. The back-propagation learning algorithm, with different training methods such as scaled conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent with momentum (GDM), variable learning rate back propagation (GDA) and resilient back propagation (RP) were used for the purpose. The SCG with seven neurons in the hidden layer showed the best performance with minimum mean square error of 0.0001517. Finally, ANN model performance was compared with classical thermodynamical models for the specific volume prediction of superheated water. Some equations of state such as Lee Kesler, NRTL, Soave–Redlich–Kwong and Peng–Robinson were used for the purpose. The comparisons showed the ANN capability for prediction of the thermodynamic properties of water gases.
doi_str_mv 10.5004/dwt.2011.1494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1777119183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624177740</els_id><sourcerecordid>1777119183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-7e85c886749bdd4e3631c84064a0c538676c4726720a464fab635ca3b4a6987a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWLRH7wsieNmabGaTzbEUnxS86Dmk2VlN2W5qsrX235ulRURwLjMw3zz4CLlgdFJSCjf1tp8UlLEJAwVHZMQUQM5VJY5_1adkHOOSpihBllCMyNO0y_BrjaHPVr7GNmt8yPp3zNYBa2d757vMN9nW9BiyNxMxDt2Q2F1nVs4mzg_TDuM5OWlMG3F8yGfk9e72ZfaQz5_vH2fTeW65FH0usSptVQkJalHXgFxwZiugAgy1JU8NYUEWQhbUgIDGLAQvreELMEJV0vAzcr3fm05_bDD2euWixbY1HfpN1ExKyZhiFU_o5R906TehS99ppjhQySiwROV7ygYfY8BGr4NbmbDTjOpBrk5y9SBXD3ITf3XYaqI1bRNMZ138GSqAK8lUlTi55zDZ-HQYdLQOO5vEBrS9rr3758I3mFyKzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934071041</pqid></control><display><type>article</type><title>An expert model for the prediction of water gases thermodynamic properties</title><source>Alma/SFX Local Collection</source><creator>Hosseini, S.M. ; Parvizian, F. ; Moghadassi, A.R. ; Sharifi, A. ; Adimi, M. ; Hashemi, S.J.</creator><creatorcontrib>Hosseini, S.M. ; Parvizian, F. ; Moghadassi, A.R. ; Sharifi, A. ; Adimi, M. ; Hashemi, S.J.</creatorcontrib><description>Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In the current research a new method based on artificial neural network (ANN) was applied for the prediction of water gases thermodynamic properties. The required data were collected and after pre-treating was used for training of ANN. Also the accuracy and trend stability of the trained networks were tested by it generalization ability in predicting of unseen data. The back-propagation learning algorithm, with different training methods such as scaled conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent with momentum (GDM), variable learning rate back propagation (GDA) and resilient back propagation (RP) were used for the purpose. The SCG with seven neurons in the hidden layer showed the best performance with minimum mean square error of 0.0001517. Finally, ANN model performance was compared with classical thermodynamical models for the specific volume prediction of superheated water. Some equations of state such as Lee Kesler, NRTL, Soave–Redlich–Kwong and Peng–Robinson were used for the purpose. The comparisons showed the ANN capability for prediction of the thermodynamic properties of water gases.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.5004/dwt.2011.1494</identifier><language>eng</language><publisher>L'Aquila: Elsevier Inc</publisher><subject>Algorithms ; Applied sciences ; Artificial neural network ; Artificial neural networks ; Back propagation ; Density ; Equation of state ; Equations of state ; Exact sciences and technology ; Gases ; Learning ; Learning theory ; Machine learning ; Mathematical models ; Momentum ; Neural networks ; Pollution ; Prediction ; Predictions ; Propagation ; Properties ; Specific volume ; Stability ; Thermal properties ; Thermodynamic properties ; Training ; Water ; Water gases ; Water treatment and pollution</subject><ispartof>Desalination and water treatment, 2011-05, Vol.29 (1-3), p.285-293</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-7e85c886749bdd4e3631c84064a0c538676c4726720a464fab635ca3b4a6987a3</citedby><cites>FETCH-LOGICAL-c376t-7e85c886749bdd4e3631c84064a0c538676c4726720a464fab635ca3b4a6987a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24397198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseini, S.M.</creatorcontrib><creatorcontrib>Parvizian, F.</creatorcontrib><creatorcontrib>Moghadassi, A.R.</creatorcontrib><creatorcontrib>Sharifi, A.</creatorcontrib><creatorcontrib>Adimi, M.</creatorcontrib><creatorcontrib>Hashemi, S.J.</creatorcontrib><title>An expert model for the prediction of water gases thermodynamic properties</title><title>Desalination and water treatment</title><description>Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In the current research a new method based on artificial neural network (ANN) was applied for the prediction of water gases thermodynamic properties. The required data were collected and after pre-treating was used for training of ANN. Also the accuracy and trend stability of the trained networks were tested by it generalization ability in predicting of unseen data. The back-propagation learning algorithm, with different training methods such as scaled conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent with momentum (GDM), variable learning rate back propagation (GDA) and resilient back propagation (RP) were used for the purpose. The SCG with seven neurons in the hidden layer showed the best performance with minimum mean square error of 0.0001517. Finally, ANN model performance was compared with classical thermodynamical models for the specific volume prediction of superheated water. Some equations of state such as Lee Kesler, NRTL, Soave–Redlich–Kwong and Peng–Robinson were used for the purpose. The comparisons showed the ANN capability for prediction of the thermodynamic properties of water gases.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Density</subject><subject>Equation of state</subject><subject>Equations of state</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Neural networks</subject><subject>Pollution</subject><subject>Prediction</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Properties</subject><subject>Specific volume</subject><subject>Stability</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Training</subject><subject>Water</subject><subject>Water gases</subject><subject>Water treatment and pollution</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWLRH7wsieNmabGaTzbEUnxS86Dmk2VlN2W5qsrX235ulRURwLjMw3zz4CLlgdFJSCjf1tp8UlLEJAwVHZMQUQM5VJY5_1adkHOOSpihBllCMyNO0y_BrjaHPVr7GNmt8yPp3zNYBa2d757vMN9nW9BiyNxMxDt2Q2F1nVs4mzg_TDuM5OWlMG3F8yGfk9e72ZfaQz5_vH2fTeW65FH0usSptVQkJalHXgFxwZiugAgy1JU8NYUEWQhbUgIDGLAQvreELMEJV0vAzcr3fm05_bDD2euWixbY1HfpN1ExKyZhiFU_o5R906TehS99ppjhQySiwROV7ygYfY8BGr4NbmbDTjOpBrk5y9SBXD3ITf3XYaqI1bRNMZ138GSqAK8lUlTi55zDZ-HQYdLQOO5vEBrS9rr3758I3mFyKzg</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Hosseini, S.M.</creator><creator>Parvizian, F.</creator><creator>Moghadassi, A.R.</creator><creator>Sharifi, A.</creator><creator>Adimi, M.</creator><creator>Hashemi, S.J.</creator><general>Elsevier Inc</general><general>Desalination Publications</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope></search><sort><creationdate>20110501</creationdate><title>An expert model for the prediction of water gases thermodynamic properties</title><author>Hosseini, S.M. ; Parvizian, F. ; Moghadassi, A.R. ; Sharifi, A. ; Adimi, M. ; Hashemi, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-7e85c886749bdd4e3631c84064a0c538676c4726720a464fab635ca3b4a6987a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Density</topic><topic>Equation of state</topic><topic>Equations of state</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Neural networks</topic><topic>Pollution</topic><topic>Prediction</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Properties</topic><topic>Specific volume</topic><topic>Stability</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Training</topic><topic>Water</topic><topic>Water gases</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, S.M.</creatorcontrib><creatorcontrib>Parvizian, F.</creatorcontrib><creatorcontrib>Moghadassi, A.R.</creatorcontrib><creatorcontrib>Sharifi, A.</creatorcontrib><creatorcontrib>Adimi, M.</creatorcontrib><creatorcontrib>Hashemi, S.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, S.M.</au><au>Parvizian, F.</au><au>Moghadassi, A.R.</au><au>Sharifi, A.</au><au>Adimi, M.</au><au>Hashemi, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An expert model for the prediction of water gases thermodynamic properties</atitle><jtitle>Desalination and water treatment</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>29</volume><issue>1-3</issue><spage>285</spage><epage>293</epage><pages>285-293</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical and chemical processes. In the current research a new method based on artificial neural network (ANN) was applied for the prediction of water gases thermodynamic properties. The required data were collected and after pre-treating was used for training of ANN. Also the accuracy and trend stability of the trained networks were tested by it generalization ability in predicting of unseen data. The back-propagation learning algorithm, with different training methods such as scaled conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent with momentum (GDM), variable learning rate back propagation (GDA) and resilient back propagation (RP) were used for the purpose. The SCG with seven neurons in the hidden layer showed the best performance with minimum mean square error of 0.0001517. Finally, ANN model performance was compared with classical thermodynamical models for the specific volume prediction of superheated water. Some equations of state such as Lee Kesler, NRTL, Soave–Redlich–Kwong and Peng–Robinson were used for the purpose. The comparisons showed the ANN capability for prediction of the thermodynamic properties of water gases.</abstract><cop>L'Aquila</cop><pub>Elsevier Inc</pub><doi>10.5004/dwt.2011.1494</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2011-05, Vol.29 (1-3), p.285-293
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1777119183
source Alma/SFX Local Collection
subjects Algorithms
Applied sciences
Artificial neural network
Artificial neural networks
Back propagation
Density
Equation of state
Equations of state
Exact sciences and technology
Gases
Learning
Learning theory
Machine learning
Mathematical models
Momentum
Neural networks
Pollution
Prediction
Predictions
Propagation
Properties
Specific volume
Stability
Thermal properties
Thermodynamic properties
Training
Water
Water gases
Water treatment and pollution
title An expert model for the prediction of water gases thermodynamic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20expert%20model%20for%20the%20prediction%20of%20water%20gases%20thermodynamic%20properties&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Hosseini,%20S.M.&rft.date=2011-05-01&rft.volume=29&rft.issue=1-3&rft.spage=285&rft.epage=293&rft.pages=285-293&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.5004/dwt.2011.1494&rft_dat=%3Cproquest_cross%3E1777119183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934071041&rft_id=info:pmid/&rft_els_id=S1944398624177740&rfr_iscdi=true