Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)

Conduit hydrogels have been considered for axonal regeneration in both central and peripheral nervous systems. However, a drawback of hydrogel conduits is their lack of mechanical integrity and strength under physiological conditions. , M. R. Abidian and co-workers report a novel method for preparat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2012-11, Vol.1 (6), p.681-681
Hauptverfasser: Abidian, Mohammad R., Daneshvar, Eugene D., Egeland, Brent M., Kipke, Daryl R., Cederna, Paul S., Urbanchek, Melanie G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 6
container_start_page 681
container_title Advanced healthcare materials
container_volume 1
creator Abidian, Mohammad R.
Daneshvar, Eugene D.
Egeland, Brent M.
Kipke, Daryl R.
Cederna, Paul S.
Urbanchek, Melanie G.
description Conduit hydrogels have been considered for axonal regeneration in both central and peripheral nervous systems. However, a drawback of hydrogel conduits is their lack of mechanical integrity and strength under physiological conditions. , M. R. Abidian and co-workers report a novel method for preparation of mechanically reinforced agarose nerve conduits that are then made conductive by use of a thin layer of conducting polymer pol(3,4-ethylenedioxythiophene) (PEDOT). The front cover illustrates axon guidance and growth inside a partially coated PEDOT agarose hydrogel conduit.
doi_str_mv 10.1002/adhm.201290030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776669303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3955982791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2230-defc68002b3442ad9038e472504ed92748ef055954ab30fcd27b0b057e0fde73</originalsourceid><addsrcrecordid>eNp1kc2O0zAUhSMEEqNhtqwtsRkWyVz_N-yqatogDQWkSCwtJ75pM6TxYCcwfRGeF1dFXSDhja3r7xzp3JNlbykUFIDdWbc_FAwoKwE4vMiuGC1ZzpQsX17eAl5nNzE-QjpKUrWgV9nvLc7BDqTuY5yR3I-7fkQM_bj7QKpjE3pHVn50czulEfnih-MBQ14dXfA7HM5__RRJ5wNZPvsxWW2C_zXtiR0d-a85uV26nwWp0A7TvrUBySc7YSiIujuFeP8me9XZIeLN3_s6q9f39arKHz5vPq6WD3nLGIfcYdeqRcrfcCGYdSXwBQrNJAh0JdNigR1IWUphGw5d65huoAGpETqHml9nt2fbp-B_zBgnc-hji8NgR_RzNFRrpVTJgSf03T_oo59Dynui0poFVVIkqjhTbfAxBuzMU-gPNhwNBXMqypyKMpeikiA_C_o44fOFtuG7UZprab5tN2b1db3eiro2Ff8DmTCUeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765941654</pqid></control><display><type>article</type><title>Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)</title><source>Wiley Online Library All Journals</source><creator>Abidian, Mohammad R. ; Daneshvar, Eugene D. ; Egeland, Brent M. ; Kipke, Daryl R. ; Cederna, Paul S. ; Urbanchek, Melanie G.</creator><creatorcontrib>Abidian, Mohammad R. ; Daneshvar, Eugene D. ; Egeland, Brent M. ; Kipke, Daryl R. ; Cederna, Paul S. ; Urbanchek, Melanie G.</creatorcontrib><description>Conduit hydrogels have been considered for axonal regeneration in both central and peripheral nervous systems. However, a drawback of hydrogel conduits is their lack of mechanical integrity and strength under physiological conditions. , M. R. Abidian and co-workers report a novel method for preparation of mechanically reinforced agarose nerve conduits that are then made conductive by use of a thin layer of conducting polymer pol(3,4-ethylenedioxythiophene) (PEDOT). The front cover illustrates axon guidance and growth inside a partially coated PEDOT agarose hydrogel conduit.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201290030</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>4-ethylenedioxythiophene ; axonal growth ; conducting polymer ; hydrogel ; poly ; tissue engineering</subject><ispartof>Advanced healthcare materials, 2012-11, Vol.1 (6), p.681-681</ispartof><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2230-defc68002b3442ad9038e472504ed92748ef055954ab30fcd27b0b057e0fde73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Abidian, Mohammad R.</creatorcontrib><creatorcontrib>Daneshvar, Eugene D.</creatorcontrib><creatorcontrib>Egeland, Brent M.</creatorcontrib><creatorcontrib>Kipke, Daryl R.</creatorcontrib><creatorcontrib>Cederna, Paul S.</creatorcontrib><creatorcontrib>Urbanchek, Melanie G.</creatorcontrib><title>Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)</title><title>Advanced healthcare materials</title><addtitle>Advanced Healthcare Materials</addtitle><description>Conduit hydrogels have been considered for axonal regeneration in both central and peripheral nervous systems. However, a drawback of hydrogel conduits is their lack of mechanical integrity and strength under physiological conditions. , M. R. Abidian and co-workers report a novel method for preparation of mechanically reinforced agarose nerve conduits that are then made conductive by use of a thin layer of conducting polymer pol(3,4-ethylenedioxythiophene) (PEDOT). The front cover illustrates axon guidance and growth inside a partially coated PEDOT agarose hydrogel conduit.</description><subject>4-ethylenedioxythiophene</subject><subject>axonal growth</subject><subject>conducting polymer</subject><subject>hydrogel</subject><subject>poly</subject><subject>tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kc2O0zAUhSMEEqNhtqwtsRkWyVz_N-yqatogDQWkSCwtJ75pM6TxYCcwfRGeF1dFXSDhja3r7xzp3JNlbykUFIDdWbc_FAwoKwE4vMiuGC1ZzpQsX17eAl5nNzE-QjpKUrWgV9nvLc7BDqTuY5yR3I-7fkQM_bj7QKpjE3pHVn50czulEfnih-MBQ14dXfA7HM5__RRJ5wNZPvsxWW2C_zXtiR0d-a85uV26nwWp0A7TvrUBySc7YSiIujuFeP8me9XZIeLN3_s6q9f39arKHz5vPq6WD3nLGIfcYdeqRcrfcCGYdSXwBQrNJAh0JdNigR1IWUphGw5d65huoAGpETqHml9nt2fbp-B_zBgnc-hji8NgR_RzNFRrpVTJgSf03T_oo59Dynui0poFVVIkqjhTbfAxBuzMU-gPNhwNBXMqypyKMpeikiA_C_o44fOFtuG7UZprab5tN2b1db3eiro2Ff8DmTCUeQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Abidian, Mohammad R.</creator><creator>Daneshvar, Eugene D.</creator><creator>Egeland, Brent M.</creator><creator>Kipke, Daryl R.</creator><creator>Cederna, Paul S.</creator><creator>Urbanchek, Melanie G.</creator><general>WILEY-VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201211</creationdate><title>Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)</title><author>Abidian, Mohammad R. ; Daneshvar, Eugene D. ; Egeland, Brent M. ; Kipke, Daryl R. ; Cederna, Paul S. ; Urbanchek, Melanie G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2230-defc68002b3442ad9038e472504ed92748ef055954ab30fcd27b0b057e0fde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>4-ethylenedioxythiophene</topic><topic>axonal growth</topic><topic>conducting polymer</topic><topic>hydrogel</topic><topic>poly</topic><topic>tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abidian, Mohammad R.</creatorcontrib><creatorcontrib>Daneshvar, Eugene D.</creatorcontrib><creatorcontrib>Egeland, Brent M.</creatorcontrib><creatorcontrib>Kipke, Daryl R.</creatorcontrib><creatorcontrib>Cederna, Paul S.</creatorcontrib><creatorcontrib>Urbanchek, Melanie G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abidian, Mohammad R.</au><au>Daneshvar, Eugene D.</au><au>Egeland, Brent M.</au><au>Kipke, Daryl R.</au><au>Cederna, Paul S.</au><au>Urbanchek, Melanie G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Advanced Healthcare Materials</addtitle><date>2012-11</date><risdate>2012</risdate><volume>1</volume><issue>6</issue><spage>681</spage><epage>681</epage><pages>681-681</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Conduit hydrogels have been considered for axonal regeneration in both central and peripheral nervous systems. However, a drawback of hydrogel conduits is their lack of mechanical integrity and strength under physiological conditions. , M. R. Abidian and co-workers report a novel method for preparation of mechanically reinforced agarose nerve conduits that are then made conductive by use of a thin layer of conducting polymer pol(3,4-ethylenedioxythiophene) (PEDOT). The front cover illustrates axon guidance and growth inside a partially coated PEDOT agarose hydrogel conduit.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adhm.201290030</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2012-11, Vol.1 (6), p.681-681
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1776669303
source Wiley Online Library All Journals
subjects 4-ethylenedioxythiophene
axonal growth
conducting polymer
hydrogel
poly
tissue engineering
title Neural Tissue Engineering: Hybrid Conducting Polymer-Hydrogel Conduits for Axonal Growth and Neural Tissue Engineering (Adv. Healthcare Mater. 6/2012)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Tissue%20Engineering:%20Hybrid%20Conducting%20Polymer-Hydrogel%20Conduits%20for%20Axonal%20Growth%20and%20Neural%20Tissue%20Engineering%20(Adv.%20Healthcare%20Mater.%206/2012)&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Abidian,%20Mohammad%20R.&rft.date=2012-11&rft.volume=1&rft.issue=6&rft.spage=681&rft.epage=681&rft.pages=681-681&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201290030&rft_dat=%3Cproquest_cross%3E3955982791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765941654&rft_id=info:pmid/&rfr_iscdi=true