Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies
Abstract Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve the...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2016-04, Vol.71, p.67-76 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Computers in biology and medicine |
container_volume | 71 |
creator | Welikala, R.A Fraz, M.M Foster, P.J Whincup, P.H Rudnicka, A.R Owen, C.G Strachan, D.P Barman, S.A |
description | Abstract Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost. |
doi_str_mv | 10.1016/j.compbiomed.2016.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776668404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482516300178</els_id><sourcerecordid>3993192691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a45690b96d27e73ffcd02c3a73eade976836f4941d66124fbab6c51699601da3</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhS0EotuFv4AsceGSME4cO7kgtRUURCUOlLNx7EnxNom3toO0_x6HbVWpp55s2d-80bw3hFAGJQMmPu5K46d97_yEtqzySwmshEq-IBvWyq6ApuYvyQaAQcHbqjkhpzHuAIBDDa_JSSXajjed2JDfZ0vyk05oacDkZj1SN-kbpHeLHl06UB0jxjjhnKifafqD9Nd3eu58r-dbanXSERMdfKC4dxYn50d_40yWiWmxDuMb8mrQY8S39-eWXH_5fH3xtbj6cfnt4uyqMA2HVGjeiA76TthKoqyHwVioTK1ljdpiJ0Vbi4F3nFkhWMWHXvfCNEx0nQBmdb0lH46y--DvFoxJTS4aHEc9o1-iYlIKIVoO_DnoKsyziVvy_gm680vIJv2neNvWjZSZao-UCT7GgIPah2xiOCgGas1L7dRjXmrNSwFTOa9c-u6-wdKvfw-FDwFl4PwIYPbur8OgonE4G7QuoEnKevecLp-eiJjRzWtKt3jA-DiTipUC9XPdm3VtmKjzVbb1P1pewDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774883577</pqid></control><display><type>article</type><title>Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Welikala, R.A ; Fraz, M.M ; Foster, P.J ; Whincup, P.H ; Rudnicka, A.R ; Owen, C.G ; Strachan, D.P ; Barman, S.A</creator><creatorcontrib>Welikala, R.A ; Fraz, M.M ; Foster, P.J ; Whincup, P.H ; Rudnicka, A.R ; Owen, C.G ; Strachan, D.P ; Barman, S.A ; on behalf of the UK Biobank Eye and Vision Consortium ; UK Biobank Eye and Vision Consortium</creatorcontrib><description>Abstract Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2016.01.027</identifier><identifier>PMID: 26894596</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Algorithms ; Automation ; Biomedical research ; Cardiovascular disease ; Classification ; Consortia ; Datasets ; Datasets as Topic ; Diabetes ; Diabetic retinopathy ; Epidemiological studies ; Female ; Hospitals ; Humans ; Image Enhancement - methods ; Image quality ; Internal Medicine ; Large retinal datasets ; Male ; Middle Aged ; Morphology ; Other ; Random Allocation ; Retina - pathology ; Retinal image ; Retinal Vessels - pathology ; Software ; Studies ; UK Biobank ; United Kingdom ; Vascular Diseases - pathology ; Vessel segmentation</subject><ispartof>Computers in biology and medicine, 2016-04, Vol.71, p.67-76</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a45690b96d27e73ffcd02c3a73eade976836f4941d66124fbab6c51699601da3</citedby><cites>FETCH-LOGICAL-c540t-a45690b96d27e73ffcd02c3a73eade976836f4941d66124fbab6c51699601da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482516300178$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26894596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welikala, R.A</creatorcontrib><creatorcontrib>Fraz, M.M</creatorcontrib><creatorcontrib>Foster, P.J</creatorcontrib><creatorcontrib>Whincup, P.H</creatorcontrib><creatorcontrib>Rudnicka, A.R</creatorcontrib><creatorcontrib>Owen, C.G</creatorcontrib><creatorcontrib>Strachan, D.P</creatorcontrib><creatorcontrib>Barman, S.A</creatorcontrib><creatorcontrib>on behalf of the UK Biobank Eye and Vision Consortium</creatorcontrib><creatorcontrib>UK Biobank Eye and Vision Consortium</creatorcontrib><title>Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biomedical research</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Epidemiological studies</subject><subject>Female</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image quality</subject><subject>Internal Medicine</subject><subject>Large retinal datasets</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Other</subject><subject>Random Allocation</subject><subject>Retina - pathology</subject><subject>Retinal image</subject><subject>Retinal Vessels - pathology</subject><subject>Software</subject><subject>Studies</subject><subject>UK Biobank</subject><subject>United Kingdom</subject><subject>Vascular Diseases - pathology</subject><subject>Vessel segmentation</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkFv1DAQhS0EotuFv4AsceGSME4cO7kgtRUURCUOlLNx7EnxNom3toO0_x6HbVWpp55s2d-80bw3hFAGJQMmPu5K46d97_yEtqzySwmshEq-IBvWyq6ApuYvyQaAQcHbqjkhpzHuAIBDDa_JSSXajjed2JDfZ0vyk05oacDkZj1SN-kbpHeLHl06UB0jxjjhnKifafqD9Nd3eu58r-dbanXSERMdfKC4dxYn50d_40yWiWmxDuMb8mrQY8S39-eWXH_5fH3xtbj6cfnt4uyqMA2HVGjeiA76TthKoqyHwVioTK1ljdpiJ0Vbi4F3nFkhWMWHXvfCNEx0nQBmdb0lH46y--DvFoxJTS4aHEc9o1-iYlIKIVoO_DnoKsyziVvy_gm680vIJv2neNvWjZSZao-UCT7GgIPah2xiOCgGas1L7dRjXmrNSwFTOa9c-u6-wdKvfw-FDwFl4PwIYPbur8OgonE4G7QuoEnKevecLp-eiJjRzWtKt3jA-DiTipUC9XPdm3VtmKjzVbb1P1pewDs</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Welikala, R.A</creator><creator>Fraz, M.M</creator><creator>Foster, P.J</creator><creator>Whincup, P.H</creator><creator>Rudnicka, A.R</creator><creator>Owen, C.G</creator><creator>Strachan, D.P</creator><creator>Barman, S.A</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160401</creationdate><title>Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies</title><author>Welikala, R.A ; Fraz, M.M ; Foster, P.J ; Whincup, P.H ; Rudnicka, A.R ; Owen, C.G ; Strachan, D.P ; Barman, S.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a45690b96d27e73ffcd02c3a73eade976836f4941d66124fbab6c51699601da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biomedical research</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Epidemiological studies</topic><topic>Female</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image quality</topic><topic>Internal Medicine</topic><topic>Large retinal datasets</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Other</topic><topic>Random Allocation</topic><topic>Retina - pathology</topic><topic>Retinal image</topic><topic>Retinal Vessels - pathology</topic><topic>Software</topic><topic>Studies</topic><topic>UK Biobank</topic><topic>United Kingdom</topic><topic>Vascular Diseases - pathology</topic><topic>Vessel segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welikala, R.A</creatorcontrib><creatorcontrib>Fraz, M.M</creatorcontrib><creatorcontrib>Foster, P.J</creatorcontrib><creatorcontrib>Whincup, P.H</creatorcontrib><creatorcontrib>Rudnicka, A.R</creatorcontrib><creatorcontrib>Owen, C.G</creatorcontrib><creatorcontrib>Strachan, D.P</creatorcontrib><creatorcontrib>Barman, S.A</creatorcontrib><creatorcontrib>on behalf of the UK Biobank Eye and Vision Consortium</creatorcontrib><creatorcontrib>UK Biobank Eye and Vision Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welikala, R.A</au><au>Fraz, M.M</au><au>Foster, P.J</au><au>Whincup, P.H</au><au>Rudnicka, A.R</au><au>Owen, C.G</au><au>Strachan, D.P</au><au>Barman, S.A</au><aucorp>on behalf of the UK Biobank Eye and Vision Consortium</aucorp><aucorp>UK Biobank Eye and Vision Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>71</volume><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26894596</pmid><doi>10.1016/j.compbiomed.2016.01.027</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2016-04, Vol.71, p.67-76 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776668404 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Aged Algorithms Automation Biomedical research Cardiovascular disease Classification Consortia Datasets Datasets as Topic Diabetes Diabetic retinopathy Epidemiological studies Female Hospitals Humans Image Enhancement - methods Image quality Internal Medicine Large retinal datasets Male Middle Aged Morphology Other Random Allocation Retina - pathology Retinal image Retinal Vessels - pathology Software Studies UK Biobank United Kingdom Vascular Diseases - pathology Vessel segmentation |
title | Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20retinal%20image%20quality%20assessment%20on%20the%20UK%20Biobank%20dataset%20for%20epidemiological%20studies&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Welikala,%20R.A&rft.aucorp=on%20behalf%20of%20the%20UK%20Biobank%20Eye%20and%20Vision%20Consortium&rft.date=2016-04-01&rft.volume=71&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2016.01.027&rft_dat=%3Cproquest_cross%3E3993192691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774883577&rft_id=info:pmid/26894596&rft_els_id=S0010482516300178&rfr_iscdi=true |