Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I

This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mine water and the environment 2016-03, Vol.35 (1), p.29-43
Hauptverfasser: Roisenberg, C., Loubet, M., Formoso, M. L., Berger, G., Munoz, M., Dani, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 29
container_title Mine water and the environment
container_volume 35
creator Roisenberg, C.
Loubet, M.
Formoso, M. L.
Berger, G.
Munoz, M.
Dani, N.
description This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.
doi_str_mv 10.1007/s10230-015-0330-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776663918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3973603971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</originalsourceid><addsrcrecordid>eNp1kUFLAzEQhRdRsFZ_gLeAl3pYzWR3s7ve6lJrQalgxWPIpkmbsk1qsivYsz_c1HoQwdPMMN97DPOi6BzwFWCcX3vAJMExhizGSWi2B1EPKNAYMC0OQ49JFpcA5Dg68X6FMeSUZL3oc-a40GaB2qVEU6cX2iBu5mj0bpuu1dYgq9BYWrGUay14g6olD4pWOu1bLfxu_crD6JFydv1tUwUDbVuOKhsEj9pINHSSo8Gz7cLeGXTr-FY3lzfoibsWTU6jI8UbL89-aj96uRvNqvv4YTqeVMOHmKcpaeOMpFAXtaKlKtU8x_k8rwkvBM4KokRaUCLCK1RN5zjNs5RnASR1ClmRlDUkadKPBnvfjbNvnfQtW2svZNNwI23nGeQ5pTQpoQjoxR90ZTtnwnU7CsJXKSGBgj0lnPXeScU2Tq-5-2CA2S4Xts-FhVzYLhe2DRqy1_jAmoV0v5z_FX0BII6PLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771106622</pqid></control><display><type>article</type><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><source>SpringerLink (Online service)</source><creator>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</creator><creatorcontrib>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</creatorcontrib><description>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</description><identifier>ISSN: 1025-9112</identifier><identifier>EISSN: 1616-1068</identifier><identifier>DOI: 10.1007/s10230-015-0330-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminosilicates ; Aluminum silicates ; Bicarbonates ; Buffers (chemistry) ; Calcium ; Carbonates ; Coal ; Coal mines ; Coal mining ; Composition ; Destabilization ; Drainage ; Earth and Environmental Science ; Earth Sciences ; Ecotoxicology ; Evolution ; Geochemistry ; Geology ; Groundwater ; Hydrogeology ; Hydroxides ; Industrial Pollution Prevention ; Inland waters ; Iron ; Lake sediments ; Lakes ; Magnesium ; Mineral Resources ; Oxidation ; Oxygen ; Partial pressure ; pH effects ; Pyrite ; Runoff ; Salts ; Substrata ; Sulphates ; Surface water ; Technical Article ; Water ; Water chemistry ; Water depth ; Water Quality/Water Pollution</subject><ispartof>Mine water and the environment, 2016-03, Vol.35 (1), p.29-43</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</citedby><cites>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10230-015-0330-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10230-015-0330-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Roisenberg, C.</creatorcontrib><creatorcontrib>Loubet, M.</creatorcontrib><creatorcontrib>Formoso, M. L.</creatorcontrib><creatorcontrib>Berger, G.</creatorcontrib><creatorcontrib>Munoz, M.</creatorcontrib><creatorcontrib>Dani, N.</creatorcontrib><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><title>Mine water and the environment</title><addtitle>Mine Water Environ</addtitle><description>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Bicarbonates</subject><subject>Buffers (chemistry)</subject><subject>Calcium</subject><subject>Carbonates</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Composition</subject><subject>Destabilization</subject><subject>Drainage</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecotoxicology</subject><subject>Evolution</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Hydrogeology</subject><subject>Hydroxides</subject><subject>Industrial Pollution Prevention</subject><subject>Inland waters</subject><subject>Iron</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Partial pressure</subject><subject>pH effects</subject><subject>Pyrite</subject><subject>Runoff</subject><subject>Salts</subject><subject>Substrata</subject><subject>Sulphates</subject><subject>Surface water</subject><subject>Technical Article</subject><subject>Water</subject><subject>Water chemistry</subject><subject>Water depth</subject><subject>Water Quality/Water Pollution</subject><issn>1025-9112</issn><issn>1616-1068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFLAzEQhRdRsFZ_gLeAl3pYzWR3s7ve6lJrQalgxWPIpkmbsk1qsivYsz_c1HoQwdPMMN97DPOi6BzwFWCcX3vAJMExhizGSWi2B1EPKNAYMC0OQ49JFpcA5Dg68X6FMeSUZL3oc-a40GaB2qVEU6cX2iBu5mj0bpuu1dYgq9BYWrGUay14g6olD4pWOu1bLfxu_crD6JFydv1tUwUDbVuOKhsEj9pINHSSo8Gz7cLeGXTr-FY3lzfoibsWTU6jI8UbL89-aj96uRvNqvv4YTqeVMOHmKcpaeOMpFAXtaKlKtU8x_k8rwkvBM4KokRaUCLCK1RN5zjNs5RnASR1ClmRlDUkadKPBnvfjbNvnfQtW2svZNNwI23nGeQ5pTQpoQjoxR90ZTtnwnU7CsJXKSGBgj0lnPXeScU2Tq-5-2CA2S4Xts-FhVzYLhe2DRqy1_jAmoV0v5z_FX0BII6PLw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Roisenberg, C.</creator><creator>Loubet, M.</creator><creator>Formoso, M. L.</creator><creator>Berger, G.</creator><creator>Munoz, M.</creator><creator>Dani, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8C1</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160301</creationdate><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><author>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Bicarbonates</topic><topic>Buffers (chemistry)</topic><topic>Calcium</topic><topic>Carbonates</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Composition</topic><topic>Destabilization</topic><topic>Drainage</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecotoxicology</topic><topic>Evolution</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Hydrogeology</topic><topic>Hydroxides</topic><topic>Industrial Pollution Prevention</topic><topic>Inland waters</topic><topic>Iron</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Partial pressure</topic><topic>pH effects</topic><topic>Pyrite</topic><topic>Runoff</topic><topic>Salts</topic><topic>Substrata</topic><topic>Sulphates</topic><topic>Surface water</topic><topic>Technical Article</topic><topic>Water</topic><topic>Water chemistry</topic><topic>Water depth</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roisenberg, C.</creatorcontrib><creatorcontrib>Loubet, M.</creatorcontrib><creatorcontrib>Formoso, M. L.</creatorcontrib><creatorcontrib>Berger, G.</creatorcontrib><creatorcontrib>Munoz, M.</creatorcontrib><creatorcontrib>Dani, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Mine water and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roisenberg, C.</au><au>Loubet, M.</au><au>Formoso, M. L.</au><au>Berger, G.</au><au>Munoz, M.</au><au>Dani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</atitle><jtitle>Mine water and the environment</jtitle><stitle>Mine Water Environ</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>35</volume><issue>1</issue><spage>29</spage><epage>43</epage><pages>29-43</pages><issn>1025-9112</issn><eissn>1616-1068</eissn><abstract>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10230-015-0330-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1025-9112
ispartof Mine water and the environment, 2016-03, Vol.35 (1), p.29-43
issn 1025-9112
1616-1068
language eng
recordid cdi_proquest_miscellaneous_1776663918
source SpringerLink (Online service)
subjects Aluminosilicates
Aluminum silicates
Bicarbonates
Buffers (chemistry)
Calcium
Carbonates
Coal
Coal mines
Coal mining
Composition
Destabilization
Drainage
Earth and Environmental Science
Earth Sciences
Ecotoxicology
Evolution
Geochemistry
Geology
Groundwater
Hydrogeology
Hydroxides
Industrial Pollution Prevention
Inland waters
Iron
Lake sediments
Lakes
Magnesium
Mineral Resources
Oxidation
Oxygen
Partial pressure
pH effects
Pyrite
Runoff
Salts
Substrata
Sulphates
Surface water
Technical Article
Water
Water chemistry
Water depth
Water Quality/Water Pollution
title Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20Origin%20and%20Evolution%20of%20Geochemical%20Characteristics%20of%20Waters%20from%20the%20Candiota%20Coal%20Mine%20Area%20(Southern%20Brazil):%20Part%20I&rft.jtitle=Mine%20water%20and%20the%20environment&rft.au=Roisenberg,%20C.&rft.date=2016-03-01&rft.volume=35&rft.issue=1&rft.spage=29&rft.epage=43&rft.pages=29-43&rft.issn=1025-9112&rft.eissn=1616-1068&rft_id=info:doi/10.1007/s10230-015-0330-z&rft_dat=%3Cproquest_cross%3E3973603971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771106622&rft_id=info:pmid/&rfr_iscdi=true