Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I
This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO 4 , Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomit...
Gespeichert in:
Veröffentlicht in: | Mine water and the environment 2016-03, Vol.35 (1), p.29-43 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Mine water and the environment |
container_volume | 35 |
creator | Roisenberg, C. Loubet, M. Formoso, M. L. Berger, G. Munoz, M. Dani, N. |
description | This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO
4
, Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering. |
doi_str_mv | 10.1007/s10230-015-0330-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776663918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3973603971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</originalsourceid><addsrcrecordid>eNp1kUFLAzEQhRdRsFZ_gLeAl3pYzWR3s7ve6lJrQalgxWPIpkmbsk1qsivYsz_c1HoQwdPMMN97DPOi6BzwFWCcX3vAJMExhizGSWi2B1EPKNAYMC0OQ49JFpcA5Dg68X6FMeSUZL3oc-a40GaB2qVEU6cX2iBu5mj0bpuu1dYgq9BYWrGUay14g6olD4pWOu1bLfxu_crD6JFydv1tUwUDbVuOKhsEj9pINHSSo8Gz7cLeGXTr-FY3lzfoibsWTU6jI8UbL89-aj96uRvNqvv4YTqeVMOHmKcpaeOMpFAXtaKlKtU8x_k8rwkvBM4KokRaUCLCK1RN5zjNs5RnASR1ClmRlDUkadKPBnvfjbNvnfQtW2svZNNwI23nGeQ5pTQpoQjoxR90ZTtnwnU7CsJXKSGBgj0lnPXeScU2Tq-5-2CA2S4Xts-FhVzYLhe2DRqy1_jAmoV0v5z_FX0BII6PLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771106622</pqid></control><display><type>article</type><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><source>SpringerLink (Online service)</source><creator>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</creator><creatorcontrib>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</creatorcontrib><description>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO
4
, Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</description><identifier>ISSN: 1025-9112</identifier><identifier>EISSN: 1616-1068</identifier><identifier>DOI: 10.1007/s10230-015-0330-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminosilicates ; Aluminum silicates ; Bicarbonates ; Buffers (chemistry) ; Calcium ; Carbonates ; Coal ; Coal mines ; Coal mining ; Composition ; Destabilization ; Drainage ; Earth and Environmental Science ; Earth Sciences ; Ecotoxicology ; Evolution ; Geochemistry ; Geology ; Groundwater ; Hydrogeology ; Hydroxides ; Industrial Pollution Prevention ; Inland waters ; Iron ; Lake sediments ; Lakes ; Magnesium ; Mineral Resources ; Oxidation ; Oxygen ; Partial pressure ; pH effects ; Pyrite ; Runoff ; Salts ; Substrata ; Sulphates ; Surface water ; Technical Article ; Water ; Water chemistry ; Water depth ; Water Quality/Water Pollution</subject><ispartof>Mine water and the environment, 2016-03, Vol.35 (1), p.29-43</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</citedby><cites>FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10230-015-0330-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10230-015-0330-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Roisenberg, C.</creatorcontrib><creatorcontrib>Loubet, M.</creatorcontrib><creatorcontrib>Formoso, M. L.</creatorcontrib><creatorcontrib>Berger, G.</creatorcontrib><creatorcontrib>Munoz, M.</creatorcontrib><creatorcontrib>Dani, N.</creatorcontrib><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><title>Mine water and the environment</title><addtitle>Mine Water Environ</addtitle><description>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO
4
, Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Bicarbonates</subject><subject>Buffers (chemistry)</subject><subject>Calcium</subject><subject>Carbonates</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Composition</subject><subject>Destabilization</subject><subject>Drainage</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecotoxicology</subject><subject>Evolution</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Hydrogeology</subject><subject>Hydroxides</subject><subject>Industrial Pollution Prevention</subject><subject>Inland waters</subject><subject>Iron</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Partial pressure</subject><subject>pH effects</subject><subject>Pyrite</subject><subject>Runoff</subject><subject>Salts</subject><subject>Substrata</subject><subject>Sulphates</subject><subject>Surface water</subject><subject>Technical Article</subject><subject>Water</subject><subject>Water chemistry</subject><subject>Water depth</subject><subject>Water Quality/Water Pollution</subject><issn>1025-9112</issn><issn>1616-1068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFLAzEQhRdRsFZ_gLeAl3pYzWR3s7ve6lJrQalgxWPIpkmbsk1qsivYsz_c1HoQwdPMMN97DPOi6BzwFWCcX3vAJMExhizGSWi2B1EPKNAYMC0OQ49JFpcA5Dg68X6FMeSUZL3oc-a40GaB2qVEU6cX2iBu5mj0bpuu1dYgq9BYWrGUay14g6olD4pWOu1bLfxu_crD6JFydv1tUwUDbVuOKhsEj9pINHSSo8Gz7cLeGXTr-FY3lzfoibsWTU6jI8UbL89-aj96uRvNqvv4YTqeVMOHmKcpaeOMpFAXtaKlKtU8x_k8rwkvBM4KokRaUCLCK1RN5zjNs5RnASR1ClmRlDUkadKPBnvfjbNvnfQtW2svZNNwI23nGeQ5pTQpoQjoxR90ZTtnwnU7CsJXKSGBgj0lnPXeScU2Tq-5-2CA2S4Xts-FhVzYLhe2DRqy1_jAmoV0v5z_FX0BII6PLw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Roisenberg, C.</creator><creator>Loubet, M.</creator><creator>Formoso, M. L.</creator><creator>Berger, G.</creator><creator>Munoz, M.</creator><creator>Dani, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8C1</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160301</creationdate><title>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</title><author>Roisenberg, C. ; Loubet, M. ; Formoso, M. L. ; Berger, G. ; Munoz, M. ; Dani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-5241b8bf69f9fd707d7b2a8c0582fc4862c007fb6d04754a569f2b415839b1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Bicarbonates</topic><topic>Buffers (chemistry)</topic><topic>Calcium</topic><topic>Carbonates</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Composition</topic><topic>Destabilization</topic><topic>Drainage</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecotoxicology</topic><topic>Evolution</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Hydrogeology</topic><topic>Hydroxides</topic><topic>Industrial Pollution Prevention</topic><topic>Inland waters</topic><topic>Iron</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Partial pressure</topic><topic>pH effects</topic><topic>Pyrite</topic><topic>Runoff</topic><topic>Salts</topic><topic>Substrata</topic><topic>Sulphates</topic><topic>Surface water</topic><topic>Technical Article</topic><topic>Water</topic><topic>Water chemistry</topic><topic>Water depth</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roisenberg, C.</creatorcontrib><creatorcontrib>Loubet, M.</creatorcontrib><creatorcontrib>Formoso, M. L.</creatorcontrib><creatorcontrib>Berger, G.</creatorcontrib><creatorcontrib>Munoz, M.</creatorcontrib><creatorcontrib>Dani, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Mine water and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roisenberg, C.</au><au>Loubet, M.</au><au>Formoso, M. L.</au><au>Berger, G.</au><au>Munoz, M.</au><au>Dani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I</atitle><jtitle>Mine water and the environment</jtitle><stitle>Mine Water Environ</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>35</volume><issue>1</issue><spage>29</spage><epage>43</epage><pages>29-43</pages><issn>1025-9112</issn><eissn>1616-1068</eissn><abstract>This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO
4
, Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10230-015-0330-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-9112 |
ispartof | Mine water and the environment, 2016-03, Vol.35 (1), p.29-43 |
issn | 1025-9112 1616-1068 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776663918 |
source | SpringerLink (Online service) |
subjects | Aluminosilicates Aluminum silicates Bicarbonates Buffers (chemistry) Calcium Carbonates Coal Coal mines Coal mining Composition Destabilization Drainage Earth and Environmental Science Earth Sciences Ecotoxicology Evolution Geochemistry Geology Groundwater Hydrogeology Hydroxides Industrial Pollution Prevention Inland waters Iron Lake sediments Lakes Magnesium Mineral Resources Oxidation Oxygen Partial pressure pH effects Pyrite Runoff Salts Substrata Sulphates Surface water Technical Article Water Water chemistry Water depth Water Quality/Water Pollution |
title | Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20Origin%20and%20Evolution%20of%20Geochemical%20Characteristics%20of%20Waters%20from%20the%20Candiota%20Coal%20Mine%20Area%20(Southern%20Brazil):%20Part%20I&rft.jtitle=Mine%20water%20and%20the%20environment&rft.au=Roisenberg,%20C.&rft.date=2016-03-01&rft.volume=35&rft.issue=1&rft.spage=29&rft.epage=43&rft.pages=29-43&rft.issn=1025-9112&rft.eissn=1616-1068&rft_id=info:doi/10.1007/s10230-015-0330-z&rft_dat=%3Cproquest_cross%3E3973603971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771106622&rft_id=info:pmid/&rfr_iscdi=true |