Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework

AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2016-02, Vol.25 (2), p.238-249
Hauptverfasser: Talluto, Matthew V, Boulangeat, Isabelle, Ameztegui, Aitor, Aubin, Isabelle, Berteaux, Dominique, Butler, Alyssa, Doyon, Frédérik, Drever, C. Ronnie, Fortin, Marie‐Josée, Franceschini, Tony, Liénard, Jean, McKenney, Dan, Solarik, Kevin A, Strigul, Nikolay, Thuiller, Wilfried, Gravel, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 2
container_start_page 238
container_title Global ecology and biogeography
container_volume 25
creator Talluto, Matthew V
Boulangeat, Isabelle
Ameztegui, Aitor
Aubin, Isabelle
Berteaux, Dominique
Butler, Alyssa
Doyon, Frédérik
Drever, C. Ronnie
Fortin, Marie‐Josée
Franceschini, Tony
Liénard, Jean
McKenney, Dan
Solarik, Kevin A
Strigul, Nikolay
Thuiller, Wilfried
Gravel, Dominique
description AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.
doi_str_mv 10.1111/geb.12395
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43871616</jstor_id><sourcerecordid>43871616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</originalsourceid><addsrcrecordid>eNp1kU1u1EAQhS0EEiGw4AAIS2xg4aR_y212wUoGRAQLyMCu1bbLVs_Y7qHbo0l2HIEzchLaGGaBRG2qpPe9UulVkjyl5IzGOu-wOqOMF_JeckIFQKYYV_ePM_v6MHkUwoYQIoWEk0SX3oXw8_uPUJseUztO2HkzWTemrk23ozv02HSYts6nO4-NrSc7dmnYYW0xpN6MHYbXqUkHnMzgGuz7WW-9GfDg_PZx8qA1fcAnf_ppcnN1-bl8m11_XL0rL66zWtJCZlVtmkpxJhSAEkZSKXNGBAhZo2IGBXIlmwYoEiDQ5qZQpoUCKyCsUtF5mrxc9u68-7bHMOnBhjpeY0Z0-6BpngMAozCjL_5BN27vx3hdpCQHUXA5U68Wqp4D8tjqnbeD8XeaEj1HrWPU-nfUkT1f2IPt8e7_oF5dvvnreLY4NmFy_ugQXOUUKEQ9W3QbJrw96sZvNeQ8l_rLh5V-X67VupClXkf--cK3xmnTeRv0zSdGKMRHK6CU81_5S6Kb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753649358</pqid></control><display><type>article</type><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><source>Wiley Online Library</source><source>JSTOR</source><creator>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</creator><creatorcontrib>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</creatorcontrib><description>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.12395</identifier><identifier>CODEN: GEBIFS</identifier><language>eng</language><publisher>Oxford: Blackwell Science</publisher><subject>Acer saccharum ; biogeography ; Climate change ; computer software ; data collection ; decision making ; ecologists ; fecundity ; MACROECOLOGICAL METHODS ; patterns and processes ; prediction ; range dynamics ; scaling ; spatial ecology ; species distribution modelling ; trees ; uncertainty</subject><ispartof>Global ecology and biogeography, 2016-02, Vol.25 (2), p.238-249</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons Ltd.</rights><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</citedby><cites>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</cites><orcidid>0000-0002-9229-0599 ; 0000-0001-5188-7332 ; 0000-0003-2006-1559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43871616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43871616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Talluto, Matthew V</creatorcontrib><creatorcontrib>Boulangeat, Isabelle</creatorcontrib><creatorcontrib>Ameztegui, Aitor</creatorcontrib><creatorcontrib>Aubin, Isabelle</creatorcontrib><creatorcontrib>Berteaux, Dominique</creatorcontrib><creatorcontrib>Butler, Alyssa</creatorcontrib><creatorcontrib>Doyon, Frédérik</creatorcontrib><creatorcontrib>Drever, C. Ronnie</creatorcontrib><creatorcontrib>Fortin, Marie‐Josée</creatorcontrib><creatorcontrib>Franceschini, Tony</creatorcontrib><creatorcontrib>Liénard, Jean</creatorcontrib><creatorcontrib>McKenney, Dan</creatorcontrib><creatorcontrib>Solarik, Kevin A</creatorcontrib><creatorcontrib>Strigul, Nikolay</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Gravel, Dominique</creatorcontrib><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><title>Global ecology and biogeography</title><addtitle>Global Ecology and Biogeography</addtitle><description>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</description><subject>Acer saccharum</subject><subject>biogeography</subject><subject>Climate change</subject><subject>computer software</subject><subject>data collection</subject><subject>decision making</subject><subject>ecologists</subject><subject>fecundity</subject><subject>MACROECOLOGICAL METHODS</subject><subject>patterns and processes</subject><subject>prediction</subject><subject>range dynamics</subject><subject>scaling</subject><subject>spatial ecology</subject><subject>species distribution modelling</subject><subject>trees</subject><subject>uncertainty</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1u1EAQhS0EEiGw4AAIS2xg4aR_y212wUoGRAQLyMCu1bbLVs_Y7qHbo0l2HIEzchLaGGaBRG2qpPe9UulVkjyl5IzGOu-wOqOMF_JeckIFQKYYV_ePM_v6MHkUwoYQIoWEk0SX3oXw8_uPUJseUztO2HkzWTemrk23ozv02HSYts6nO4-NrSc7dmnYYW0xpN6MHYbXqUkHnMzgGuz7WW-9GfDg_PZx8qA1fcAnf_ppcnN1-bl8m11_XL0rL66zWtJCZlVtmkpxJhSAEkZSKXNGBAhZo2IGBXIlmwYoEiDQ5qZQpoUCKyCsUtF5mrxc9u68-7bHMOnBhjpeY0Z0-6BpngMAozCjL_5BN27vx3hdpCQHUXA5U68Wqp4D8tjqnbeD8XeaEj1HrWPU-nfUkT1f2IPt8e7_oF5dvvnreLY4NmFy_ugQXOUUKEQ9W3QbJrw96sZvNeQ8l_rLh5V-X67VupClXkf--cK3xmnTeRv0zSdGKMRHK6CU81_5S6Kb</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Talluto, Matthew V</creator><creator>Boulangeat, Isabelle</creator><creator>Ameztegui, Aitor</creator><creator>Aubin, Isabelle</creator><creator>Berteaux, Dominique</creator><creator>Butler, Alyssa</creator><creator>Doyon, Frédérik</creator><creator>Drever, C. Ronnie</creator><creator>Fortin, Marie‐Josée</creator><creator>Franceschini, Tony</creator><creator>Liénard, Jean</creator><creator>McKenney, Dan</creator><creator>Solarik, Kevin A</creator><creator>Strigul, Nikolay</creator><creator>Thuiller, Wilfried</creator><creator>Gravel, Dominique</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-9229-0599</orcidid><orcidid>https://orcid.org/0000-0001-5188-7332</orcidid><orcidid>https://orcid.org/0000-0003-2006-1559</orcidid></search><sort><creationdate>201602</creationdate><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><author>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acer saccharum</topic><topic>biogeography</topic><topic>Climate change</topic><topic>computer software</topic><topic>data collection</topic><topic>decision making</topic><topic>ecologists</topic><topic>fecundity</topic><topic>MACROECOLOGICAL METHODS</topic><topic>patterns and processes</topic><topic>prediction</topic><topic>range dynamics</topic><topic>scaling</topic><topic>spatial ecology</topic><topic>species distribution modelling</topic><topic>trees</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talluto, Matthew V</creatorcontrib><creatorcontrib>Boulangeat, Isabelle</creatorcontrib><creatorcontrib>Ameztegui, Aitor</creatorcontrib><creatorcontrib>Aubin, Isabelle</creatorcontrib><creatorcontrib>Berteaux, Dominique</creatorcontrib><creatorcontrib>Butler, Alyssa</creatorcontrib><creatorcontrib>Doyon, Frédérik</creatorcontrib><creatorcontrib>Drever, C. Ronnie</creatorcontrib><creatorcontrib>Fortin, Marie‐Josée</creatorcontrib><creatorcontrib>Franceschini, Tony</creatorcontrib><creatorcontrib>Liénard, Jean</creatorcontrib><creatorcontrib>McKenney, Dan</creatorcontrib><creatorcontrib>Solarik, Kevin A</creatorcontrib><creatorcontrib>Strigul, Nikolay</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Gravel, Dominique</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talluto, Matthew V</au><au>Boulangeat, Isabelle</au><au>Ameztegui, Aitor</au><au>Aubin, Isabelle</au><au>Berteaux, Dominique</au><au>Butler, Alyssa</au><au>Doyon, Frédérik</au><au>Drever, C. Ronnie</au><au>Fortin, Marie‐Josée</au><au>Franceschini, Tony</au><au>Liénard, Jean</au><au>McKenney, Dan</au><au>Solarik, Kevin A</au><au>Strigul, Nikolay</au><au>Thuiller, Wilfried</au><au>Gravel, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</atitle><jtitle>Global ecology and biogeography</jtitle><addtitle>Global Ecology and Biogeography</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>238</spage><epage>249</epage><pages>238-249</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><coden>GEBIFS</coden><abstract>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</abstract><cop>Oxford</cop><pub>Blackwell Science</pub><doi>10.1111/geb.12395</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9229-0599</orcidid><orcidid>https://orcid.org/0000-0001-5188-7332</orcidid><orcidid>https://orcid.org/0000-0003-2006-1559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2016-02, Vol.25 (2), p.238-249
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_miscellaneous_1776662168
source Wiley Online Library; JSTOR
subjects Acer saccharum
biogeography
Climate change
computer software
data collection
decision making
ecologists
fecundity
MACROECOLOGICAL METHODS
patterns and processes
prediction
range dynamics
scaling
spatial ecology
species distribution modelling
trees
uncertainty
title Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%E2%80%90scale%20integration%20of%20knowledge%20for%20predicting%20species%20ranges:%20a%20metamodelling%20framework&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Talluto,%20Matthew%20V&rft.date=2016-02&rft.volume=25&rft.issue=2&rft.spage=238&rft.epage=249&rft.pages=238-249&rft.issn=1466-822X&rft.eissn=1466-8238&rft.coden=GEBIFS&rft_id=info:doi/10.1111/geb.12395&rft_dat=%3Cjstor_proqu%3E43871616%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753649358&rft_id=info:pmid/&rft_jstor_id=43871616&rfr_iscdi=true