Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework
AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dis...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2016-02, Vol.25 (2), p.238-249 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 2 |
container_start_page | 238 |
container_title | Global ecology and biogeography |
container_volume | 25 |
creator | Talluto, Matthew V Boulangeat, Isabelle Ameztegui, Aitor Aubin, Isabelle Berteaux, Dominique Butler, Alyssa Doyon, Frédérik Drever, C. Ronnie Fortin, Marie‐Josée Franceschini, Tony Liénard, Jean McKenney, Dan Solarik, Kevin A Strigul, Nikolay Thuiller, Wilfried Gravel, Dominique |
description | AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making. |
doi_str_mv | 10.1111/geb.12395 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43871616</jstor_id><sourcerecordid>43871616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</originalsourceid><addsrcrecordid>eNp1kU1u1EAQhS0EEiGw4AAIS2xg4aR_y212wUoGRAQLyMCu1bbLVs_Y7qHbo0l2HIEzchLaGGaBRG2qpPe9UulVkjyl5IzGOu-wOqOMF_JeckIFQKYYV_ePM_v6MHkUwoYQIoWEk0SX3oXw8_uPUJseUztO2HkzWTemrk23ozv02HSYts6nO4-NrSc7dmnYYW0xpN6MHYbXqUkHnMzgGuz7WW-9GfDg_PZx8qA1fcAnf_ppcnN1-bl8m11_XL0rL66zWtJCZlVtmkpxJhSAEkZSKXNGBAhZo2IGBXIlmwYoEiDQ5qZQpoUCKyCsUtF5mrxc9u68-7bHMOnBhjpeY0Z0-6BpngMAozCjL_5BN27vx3hdpCQHUXA5U68Wqp4D8tjqnbeD8XeaEj1HrWPU-nfUkT1f2IPt8e7_oF5dvvnreLY4NmFy_ugQXOUUKEQ9W3QbJrw96sZvNeQ8l_rLh5V-X67VupClXkf--cK3xmnTeRv0zSdGKMRHK6CU81_5S6Kb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753649358</pqid></control><display><type>article</type><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><source>Wiley Online Library</source><source>JSTOR</source><creator>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</creator><creatorcontrib>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</creatorcontrib><description>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.12395</identifier><identifier>CODEN: GEBIFS</identifier><language>eng</language><publisher>Oxford: Blackwell Science</publisher><subject>Acer saccharum ; biogeography ; Climate change ; computer software ; data collection ; decision making ; ecologists ; fecundity ; MACROECOLOGICAL METHODS ; patterns and processes ; prediction ; range dynamics ; scaling ; spatial ecology ; species distribution modelling ; trees ; uncertainty</subject><ispartof>Global ecology and biogeography, 2016-02, Vol.25 (2), p.238-249</ispartof><rights>Copyright © 2016 John Wiley & Sons Ltd.</rights><rights>2015 John Wiley & Sons Ltd</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</citedby><cites>FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</cites><orcidid>0000-0002-9229-0599 ; 0000-0001-5188-7332 ; 0000-0003-2006-1559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43871616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43871616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Talluto, Matthew V</creatorcontrib><creatorcontrib>Boulangeat, Isabelle</creatorcontrib><creatorcontrib>Ameztegui, Aitor</creatorcontrib><creatorcontrib>Aubin, Isabelle</creatorcontrib><creatorcontrib>Berteaux, Dominique</creatorcontrib><creatorcontrib>Butler, Alyssa</creatorcontrib><creatorcontrib>Doyon, Frédérik</creatorcontrib><creatorcontrib>Drever, C. Ronnie</creatorcontrib><creatorcontrib>Fortin, Marie‐Josée</creatorcontrib><creatorcontrib>Franceschini, Tony</creatorcontrib><creatorcontrib>Liénard, Jean</creatorcontrib><creatorcontrib>McKenney, Dan</creatorcontrib><creatorcontrib>Solarik, Kevin A</creatorcontrib><creatorcontrib>Strigul, Nikolay</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Gravel, Dominique</creatorcontrib><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><title>Global ecology and biogeography</title><addtitle>Global Ecology and Biogeography</addtitle><description>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</description><subject>Acer saccharum</subject><subject>biogeography</subject><subject>Climate change</subject><subject>computer software</subject><subject>data collection</subject><subject>decision making</subject><subject>ecologists</subject><subject>fecundity</subject><subject>MACROECOLOGICAL METHODS</subject><subject>patterns and processes</subject><subject>prediction</subject><subject>range dynamics</subject><subject>scaling</subject><subject>spatial ecology</subject><subject>species distribution modelling</subject><subject>trees</subject><subject>uncertainty</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1u1EAQhS0EEiGw4AAIS2xg4aR_y212wUoGRAQLyMCu1bbLVs_Y7qHbo0l2HIEzchLaGGaBRG2qpPe9UulVkjyl5IzGOu-wOqOMF_JeckIFQKYYV_ePM_v6MHkUwoYQIoWEk0SX3oXw8_uPUJseUztO2HkzWTemrk23ozv02HSYts6nO4-NrSc7dmnYYW0xpN6MHYbXqUkHnMzgGuz7WW-9GfDg_PZx8qA1fcAnf_ppcnN1-bl8m11_XL0rL66zWtJCZlVtmkpxJhSAEkZSKXNGBAhZo2IGBXIlmwYoEiDQ5qZQpoUCKyCsUtF5mrxc9u68-7bHMOnBhjpeY0Z0-6BpngMAozCjL_5BN27vx3hdpCQHUXA5U68Wqp4D8tjqnbeD8XeaEj1HrWPU-nfUkT1f2IPt8e7_oF5dvvnreLY4NmFy_ugQXOUUKEQ9W3QbJrw96sZvNeQ8l_rLh5V-X67VupClXkf--cK3xmnTeRv0zSdGKMRHK6CU81_5S6Kb</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Talluto, Matthew V</creator><creator>Boulangeat, Isabelle</creator><creator>Ameztegui, Aitor</creator><creator>Aubin, Isabelle</creator><creator>Berteaux, Dominique</creator><creator>Butler, Alyssa</creator><creator>Doyon, Frédérik</creator><creator>Drever, C. Ronnie</creator><creator>Fortin, Marie‐Josée</creator><creator>Franceschini, Tony</creator><creator>Liénard, Jean</creator><creator>McKenney, Dan</creator><creator>Solarik, Kevin A</creator><creator>Strigul, Nikolay</creator><creator>Thuiller, Wilfried</creator><creator>Gravel, Dominique</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-9229-0599</orcidid><orcidid>https://orcid.org/0000-0001-5188-7332</orcidid><orcidid>https://orcid.org/0000-0003-2006-1559</orcidid></search><sort><creationdate>201602</creationdate><title>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</title><author>Talluto, Matthew V ; Boulangeat, Isabelle ; Ameztegui, Aitor ; Aubin, Isabelle ; Berteaux, Dominique ; Butler, Alyssa ; Doyon, Frédérik ; Drever, C. Ronnie ; Fortin, Marie‐Josée ; Franceschini, Tony ; Liénard, Jean ; McKenney, Dan ; Solarik, Kevin A ; Strigul, Nikolay ; Thuiller, Wilfried ; Gravel, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-bcadb832486684a51557204645ce82ae4e385dd61e0606f7a98af69eb602b8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acer saccharum</topic><topic>biogeography</topic><topic>Climate change</topic><topic>computer software</topic><topic>data collection</topic><topic>decision making</topic><topic>ecologists</topic><topic>fecundity</topic><topic>MACROECOLOGICAL METHODS</topic><topic>patterns and processes</topic><topic>prediction</topic><topic>range dynamics</topic><topic>scaling</topic><topic>spatial ecology</topic><topic>species distribution modelling</topic><topic>trees</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talluto, Matthew V</creatorcontrib><creatorcontrib>Boulangeat, Isabelle</creatorcontrib><creatorcontrib>Ameztegui, Aitor</creatorcontrib><creatorcontrib>Aubin, Isabelle</creatorcontrib><creatorcontrib>Berteaux, Dominique</creatorcontrib><creatorcontrib>Butler, Alyssa</creatorcontrib><creatorcontrib>Doyon, Frédérik</creatorcontrib><creatorcontrib>Drever, C. Ronnie</creatorcontrib><creatorcontrib>Fortin, Marie‐Josée</creatorcontrib><creatorcontrib>Franceschini, Tony</creatorcontrib><creatorcontrib>Liénard, Jean</creatorcontrib><creatorcontrib>McKenney, Dan</creatorcontrib><creatorcontrib>Solarik, Kevin A</creatorcontrib><creatorcontrib>Strigul, Nikolay</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Gravel, Dominique</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talluto, Matthew V</au><au>Boulangeat, Isabelle</au><au>Ameztegui, Aitor</au><au>Aubin, Isabelle</au><au>Berteaux, Dominique</au><au>Butler, Alyssa</au><au>Doyon, Frédérik</au><au>Drever, C. Ronnie</au><au>Fortin, Marie‐Josée</au><au>Franceschini, Tony</au><au>Liénard, Jean</au><au>McKenney, Dan</au><au>Solarik, Kevin A</au><au>Strigul, Nikolay</au><au>Thuiller, Wilfried</au><au>Gravel, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework</atitle><jtitle>Global ecology and biogeography</jtitle><addtitle>Global Ecology and Biogeography</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>238</spage><epage>249</epage><pages>238-249</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><coden>GEBIFS</coden><abstract>AIM: Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller‐scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. LOCATION: Eastern North America (as an example). METHODS: Our framework builds a metamodel that is constrained by the results of multiple sub‐models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presence–absence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. RESULTS: For both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. MAIN CONCLUSIONS: We conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off‐the‐shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi‐source and multi‐scale data into ecological decision‐making.</abstract><cop>Oxford</cop><pub>Blackwell Science</pub><doi>10.1111/geb.12395</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9229-0599</orcidid><orcidid>https://orcid.org/0000-0001-5188-7332</orcidid><orcidid>https://orcid.org/0000-0003-2006-1559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2016-02, Vol.25 (2), p.238-249 |
issn | 1466-822X 1466-8238 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776662168 |
source | Wiley Online Library; JSTOR |
subjects | Acer saccharum biogeography Climate change computer software data collection decision making ecologists fecundity MACROECOLOGICAL METHODS patterns and processes prediction range dynamics scaling spatial ecology species distribution modelling trees uncertainty |
title | Cross‐scale integration of knowledge for predicting species ranges: a metamodelling framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%E2%80%90scale%20integration%20of%20knowledge%20for%20predicting%20species%20ranges:%20a%20metamodelling%20framework&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Talluto,%20Matthew%20V&rft.date=2016-02&rft.volume=25&rft.issue=2&rft.spage=238&rft.epage=249&rft.pages=238-249&rft.issn=1466-822X&rft.eissn=1466-8238&rft.coden=GEBIFS&rft_id=info:doi/10.1111/geb.12395&rft_dat=%3Cjstor_proqu%3E43871616%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753649358&rft_id=info:pmid/&rft_jstor_id=43871616&rfr_iscdi=true |