High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter
Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of th...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-04, Vol.100 (7), p.3207-3217 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3217 |
---|---|
container_issue | 7 |
container_start_page | 3207 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Watanabe, Takashi Morita, Tomotake Koike, Hideaki Yarimizu, Tohru Shinozaki, Yukiko Sameshima-Yamashita, Yuka Yoshida, Shigenobu Koitabashi, Motoo Kitamoto, Hiroko |
description | Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE. |
doi_str_mv | 10.1007/s00253-015-7232-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445911123</galeid><sourcerecordid>A445911123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEoqXwAGzAEhtYpNhOYifLqgJaqRKI0rXlOONbV4ldbKdqeAFemwm3_FyEEPLCf98547FOUTxl9JBRKl8nSnlTlZQ1peQVL-W9Yp_VuKCC1feLfcok3jRdu1c8SumKUsZbIR4We1yIrmFNs198PXGby3KEGxhJBBOm3nntM7mOIYPz6zzMJrvgSb-QfAmk18kNLkyLgRzmRBbQKZMPCeYhfFkmTVCuI0qMJrMfIBJNbpcxJCidRy_Xj7AeaK8TrP4TVoqPiwdWjwme3M0HxcXbN5-OT8qz9-9Oj4_OSiNplcuW68pII4aG0a7mdas72zPat7qp-7bmxrTCSm5by4HipuMdx2U1cCqtkLY6KF5ufbHw5xlSVpNLBkZ8DmA3ikkphOD4Uf-DItW23Yq--AO9CnP02Mh3itYNp80vaqNHUM7bkKM2q6k6quumY4zxCqnDv1A4BpicCR6sw_MdwasdATIZbvNGzymp0_OPuyzbsiaGlCJYdR3dpOOiGFVrptQ2UwozpdZMKYmaZ3fNzf0Ew0_FjxAhwLdAwiu_gfhb9_9wfb4VWR2U3kSX1MU5p0xgSmlbIf0NC5DfZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772045205</pqid></control><display><type>article</type><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</creator><creatorcontrib>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</creatorcontrib><description>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-7232-7</identifier><identifier>PMID: 26695155</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>agar ; Applied Genetics and Molecular Biotechnology ; Basidiomycota ; Batch Cell Culture Techniques ; biodegradability ; Biodegradable materials ; Biodegradable Plastics - metabolism ; Biodegradation ; Biodegradation, Environmental ; Biomedical and Life Sciences ; Bioplastics ; Bioreactors ; Biotechnology ; chromosomes ; Chromosomes, Fungal - chemistry ; Chromosomes, Fungal - metabolism ; Cloning ; E coli ; Endo-1,4-beta Xylanases - genetics ; Endo-1,4-beta Xylanases - metabolism ; Enzyme kinetics ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; fermenters ; Fungal Proteins - biosynthesis ; Fungal Proteins - genetics ; Gene Expression ; genes ; Genetic aspects ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Neomycin ; Observations ; Oxo-Acid-Lyases - genetics ; Oxo-Acid-Lyases - metabolism ; Physiological aspects ; Plasmids ; Plasmids - chemistry ; Plasmids - metabolism ; plastics ; Promoter Regions, Genetic ; Protein Engineering ; Protein synthesis ; Proteins ; Pseudozyma antarctica ; Recombinant proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Science ; Studies ; Transgenes ; Ustilaginales - enzymology ; Ustilaginales - genetics ; Ustilago maydis ; Ustilago zeae ; xylanases ; xylose ; Xylose - metabolism ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2016-04, Vol.100 (7), p.3207-3217</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</citedby><cites>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-7232-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-7232-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26695155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Yarimizu, Tohru</creatorcontrib><creatorcontrib>Shinozaki, Yukiko</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Yoshida, Shigenobu</creatorcontrib><creatorcontrib>Koitabashi, Motoo</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</description><subject>agar</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Basidiomycota</subject><subject>Batch Cell Culture Techniques</subject><subject>biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradable Plastics - metabolism</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biomedical and Life Sciences</subject><subject>Bioplastics</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>chromosomes</subject><subject>Chromosomes, Fungal - chemistry</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Cloning</subject><subject>E coli</subject><subject>Endo-1,4-beta Xylanases - genetics</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>fermenters</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Fungal Proteins - genetics</subject><subject>Gene Expression</subject><subject>genes</subject><subject>Genetic aspects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Neomycin</subject><subject>Observations</subject><subject>Oxo-Acid-Lyases - genetics</subject><subject>Oxo-Acid-Lyases - metabolism</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>plastics</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Engineering</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Pseudozyma antarctica</subject><subject>Recombinant proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Science</subject><subject>Studies</subject><subject>Transgenes</subject><subject>Ustilaginales - enzymology</subject><subject>Ustilaginales - genetics</subject><subject>Ustilago maydis</subject><subject>Ustilago zeae</subject><subject>xylanases</subject><subject>xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1TAQhSMEoqXwAGzAEhtYpNhOYifLqgJaqRKI0rXlOONbV4ldbKdqeAFemwm3_FyEEPLCf98547FOUTxl9JBRKl8nSnlTlZQ1peQVL-W9Yp_VuKCC1feLfcok3jRdu1c8SumKUsZbIR4We1yIrmFNs198PXGby3KEGxhJBBOm3nntM7mOIYPz6zzMJrvgSb-QfAmk18kNLkyLgRzmRBbQKZMPCeYhfFkmTVCuI0qMJrMfIBJNbpcxJCidRy_Xj7AeaK8TrP4TVoqPiwdWjwme3M0HxcXbN5-OT8qz9-9Oj4_OSiNplcuW68pII4aG0a7mdas72zPat7qp-7bmxrTCSm5by4HipuMdx2U1cCqtkLY6KF5ufbHw5xlSVpNLBkZ8DmA3ikkphOD4Uf-DItW23Yq--AO9CnP02Mh3itYNp80vaqNHUM7bkKM2q6k6quumY4zxCqnDv1A4BpicCR6sw_MdwasdATIZbvNGzymp0_OPuyzbsiaGlCJYdR3dpOOiGFVrptQ2UwozpdZMKYmaZ3fNzf0Ew0_FjxAhwLdAwiu_gfhb9_9wfb4VWR2U3kSX1MU5p0xgSmlbIf0NC5DfZw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Watanabe, Takashi</creator><creator>Morita, Tomotake</creator><creator>Koike, Hideaki</creator><creator>Yarimizu, Tohru</creator><creator>Shinozaki, Yukiko</creator><creator>Sameshima-Yamashita, Yuka</creator><creator>Yoshida, Shigenobu</creator><creator>Koitabashi, Motoo</creator><creator>Kitamoto, Hiroko</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160401</creationdate><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><author>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>agar</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Basidiomycota</topic><topic>Batch Cell Culture Techniques</topic><topic>biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradable Plastics - metabolism</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biomedical and Life Sciences</topic><topic>Bioplastics</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>chromosomes</topic><topic>Chromosomes, Fungal - chemistry</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Cloning</topic><topic>E coli</topic><topic>Endo-1,4-beta Xylanases - genetics</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>fermenters</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Fungal Proteins - genetics</topic><topic>Gene Expression</topic><topic>genes</topic><topic>Genetic aspects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Neomycin</topic><topic>Observations</topic><topic>Oxo-Acid-Lyases - genetics</topic><topic>Oxo-Acid-Lyases - metabolism</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>plastics</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Engineering</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Pseudozyma antarctica</topic><topic>Recombinant proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Science</topic><topic>Studies</topic><topic>Transgenes</topic><topic>Ustilaginales - enzymology</topic><topic>Ustilaginales - genetics</topic><topic>Ustilago maydis</topic><topic>Ustilago zeae</topic><topic>xylanases</topic><topic>xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Yarimizu, Tohru</creatorcontrib><creatorcontrib>Shinozaki, Yukiko</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Yoshida, Shigenobu</creatorcontrib><creatorcontrib>Koitabashi, Motoo</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Takashi</au><au>Morita, Tomotake</au><au>Koike, Hideaki</au><au>Yarimizu, Tohru</au><au>Shinozaki, Yukiko</au><au>Sameshima-Yamashita, Yuka</au><au>Yoshida, Shigenobu</au><au>Koitabashi, Motoo</au><au>Kitamoto, Hiroko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>100</volume><issue>7</issue><spage>3207</spage><epage>3217</epage><pages>3207-3217</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26695155</pmid><doi>10.1007/s00253-015-7232-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-04, Vol.100 (7), p.3207-3217 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776662128 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | agar Applied Genetics and Molecular Biotechnology Basidiomycota Batch Cell Culture Techniques biodegradability Biodegradable materials Biodegradable Plastics - metabolism Biodegradation Biodegradation, Environmental Biomedical and Life Sciences Bioplastics Bioreactors Biotechnology chromosomes Chromosomes, Fungal - chemistry Chromosomes, Fungal - metabolism Cloning E coli Endo-1,4-beta Xylanases - genetics Endo-1,4-beta Xylanases - metabolism Enzyme kinetics Enzymes Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics fermenters Fungal Proteins - biosynthesis Fungal Proteins - genetics Gene Expression genes Genetic aspects Kinases Life Sciences Microbial Genetics and Genomics Microbiology Neomycin Observations Oxo-Acid-Lyases - genetics Oxo-Acid-Lyases - metabolism Physiological aspects Plasmids Plasmids - chemistry Plasmids - metabolism plastics Promoter Regions, Genetic Protein Engineering Protein synthesis Proteins Pseudozyma antarctica Recombinant proteins Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Science Studies Transgenes Ustilaginales - enzymology Ustilaginales - genetics Ustilago maydis Ustilago zeae xylanases xylose Xylose - metabolism Yeast Yeasts |
title | High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-level%20recombinant%20protein%20production%20by%20the%20basidiomycetous%20yeast%20Pseudozyma%20antarctica%20under%20a%20xylose-inducible%20xylanase%20promoter&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Watanabe,%20Takashi&rft.date=2016-04-01&rft.volume=100&rft.issue=7&rft.spage=3207&rft.epage=3217&rft.pages=3207-3217&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-7232-7&rft_dat=%3Cgale_proqu%3EA445911123%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772045205&rft_id=info:pmid/26695155&rft_galeid=A445911123&rfr_iscdi=true |