High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter

Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-04, Vol.100 (7), p.3207-3217
Hauptverfasser: Watanabe, Takashi, Morita, Tomotake, Koike, Hideaki, Yarimizu, Tohru, Shinozaki, Yukiko, Sameshima-Yamashita, Yuka, Yoshida, Shigenobu, Koitabashi, Motoo, Kitamoto, Hiroko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3217
container_issue 7
container_start_page 3207
container_title Applied microbiology and biotechnology
container_volume 100
creator Watanabe, Takashi
Morita, Tomotake
Koike, Hideaki
Yarimizu, Tohru
Shinozaki, Yukiko
Sameshima-Yamashita, Yuka
Yoshida, Shigenobu
Koitabashi, Motoo
Kitamoto, Hiroko
description Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.
doi_str_mv 10.1007/s00253-015-7232-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445911123</galeid><sourcerecordid>A445911123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEoqXwAGzAEhtYpNhOYifLqgJaqRKI0rXlOONbV4ldbKdqeAFemwm3_FyEEPLCf98547FOUTxl9JBRKl8nSnlTlZQ1peQVL-W9Yp_VuKCC1feLfcok3jRdu1c8SumKUsZbIR4We1yIrmFNs198PXGby3KEGxhJBBOm3nntM7mOIYPz6zzMJrvgSb-QfAmk18kNLkyLgRzmRBbQKZMPCeYhfFkmTVCuI0qMJrMfIBJNbpcxJCidRy_Xj7AeaK8TrP4TVoqPiwdWjwme3M0HxcXbN5-OT8qz9-9Oj4_OSiNplcuW68pII4aG0a7mdas72zPat7qp-7bmxrTCSm5by4HipuMdx2U1cCqtkLY6KF5ufbHw5xlSVpNLBkZ8DmA3ikkphOD4Uf-DItW23Yq--AO9CnP02Mh3itYNp80vaqNHUM7bkKM2q6k6quumY4zxCqnDv1A4BpicCR6sw_MdwasdATIZbvNGzymp0_OPuyzbsiaGlCJYdR3dpOOiGFVrptQ2UwozpdZMKYmaZ3fNzf0Ew0_FjxAhwLdAwiu_gfhb9_9wfb4VWR2U3kSX1MU5p0xgSmlbIf0NC5DfZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772045205</pqid></control><display><type>article</type><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</creator><creatorcontrib>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</creatorcontrib><description>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-7232-7</identifier><identifier>PMID: 26695155</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>agar ; Applied Genetics and Molecular Biotechnology ; Basidiomycota ; Batch Cell Culture Techniques ; biodegradability ; Biodegradable materials ; Biodegradable Plastics - metabolism ; Biodegradation ; Biodegradation, Environmental ; Biomedical and Life Sciences ; Bioplastics ; Bioreactors ; Biotechnology ; chromosomes ; Chromosomes, Fungal - chemistry ; Chromosomes, Fungal - metabolism ; Cloning ; E coli ; Endo-1,4-beta Xylanases - genetics ; Endo-1,4-beta Xylanases - metabolism ; Enzyme kinetics ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; fermenters ; Fungal Proteins - biosynthesis ; Fungal Proteins - genetics ; Gene Expression ; genes ; Genetic aspects ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Neomycin ; Observations ; Oxo-Acid-Lyases - genetics ; Oxo-Acid-Lyases - metabolism ; Physiological aspects ; Plasmids ; Plasmids - chemistry ; Plasmids - metabolism ; plastics ; Promoter Regions, Genetic ; Protein Engineering ; Protein synthesis ; Proteins ; Pseudozyma antarctica ; Recombinant proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Science ; Studies ; Transgenes ; Ustilaginales - enzymology ; Ustilaginales - genetics ; Ustilago maydis ; Ustilago zeae ; xylanases ; xylose ; Xylose - metabolism ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2016-04, Vol.100 (7), p.3207-3217</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</citedby><cites>FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-7232-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-7232-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26695155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Yarimizu, Tohru</creatorcontrib><creatorcontrib>Shinozaki, Yukiko</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Yoshida, Shigenobu</creatorcontrib><creatorcontrib>Koitabashi, Motoo</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</description><subject>agar</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Basidiomycota</subject><subject>Batch Cell Culture Techniques</subject><subject>biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradable Plastics - metabolism</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biomedical and Life Sciences</subject><subject>Bioplastics</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>chromosomes</subject><subject>Chromosomes, Fungal - chemistry</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Cloning</subject><subject>E coli</subject><subject>Endo-1,4-beta Xylanases - genetics</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>fermenters</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Fungal Proteins - genetics</subject><subject>Gene Expression</subject><subject>genes</subject><subject>Genetic aspects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Neomycin</subject><subject>Observations</subject><subject>Oxo-Acid-Lyases - genetics</subject><subject>Oxo-Acid-Lyases - metabolism</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>plastics</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Engineering</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Pseudozyma antarctica</subject><subject>Recombinant proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Science</subject><subject>Studies</subject><subject>Transgenes</subject><subject>Ustilaginales - enzymology</subject><subject>Ustilaginales - genetics</subject><subject>Ustilago maydis</subject><subject>Ustilago zeae</subject><subject>xylanases</subject><subject>xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1TAQhSMEoqXwAGzAEhtYpNhOYifLqgJaqRKI0rXlOONbV4ldbKdqeAFemwm3_FyEEPLCf98547FOUTxl9JBRKl8nSnlTlZQ1peQVL-W9Yp_VuKCC1feLfcok3jRdu1c8SumKUsZbIR4We1yIrmFNs198PXGby3KEGxhJBBOm3nntM7mOIYPz6zzMJrvgSb-QfAmk18kNLkyLgRzmRBbQKZMPCeYhfFkmTVCuI0qMJrMfIBJNbpcxJCidRy_Xj7AeaK8TrP4TVoqPiwdWjwme3M0HxcXbN5-OT8qz9-9Oj4_OSiNplcuW68pII4aG0a7mdas72zPat7qp-7bmxrTCSm5by4HipuMdx2U1cCqtkLY6KF5ufbHw5xlSVpNLBkZ8DmA3ikkphOD4Uf-DItW23Yq--AO9CnP02Mh3itYNp80vaqNHUM7bkKM2q6k6quumY4zxCqnDv1A4BpicCR6sw_MdwasdATIZbvNGzymp0_OPuyzbsiaGlCJYdR3dpOOiGFVrptQ2UwozpdZMKYmaZ3fNzf0Ew0_FjxAhwLdAwiu_gfhb9_9wfb4VWR2U3kSX1MU5p0xgSmlbIf0NC5DfZw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Watanabe, Takashi</creator><creator>Morita, Tomotake</creator><creator>Koike, Hideaki</creator><creator>Yarimizu, Tohru</creator><creator>Shinozaki, Yukiko</creator><creator>Sameshima-Yamashita, Yuka</creator><creator>Yoshida, Shigenobu</creator><creator>Koitabashi, Motoo</creator><creator>Kitamoto, Hiroko</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160401</creationdate><title>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</title><author>Watanabe, Takashi ; Morita, Tomotake ; Koike, Hideaki ; Yarimizu, Tohru ; Shinozaki, Yukiko ; Sameshima-Yamashita, Yuka ; Yoshida, Shigenobu ; Koitabashi, Motoo ; Kitamoto, Hiroko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-82a3c7c6d51094248a9fb10b8a54b842cc86f72f8f2e0cc89292f2e3d207f67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>agar</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Basidiomycota</topic><topic>Batch Cell Culture Techniques</topic><topic>biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradable Plastics - metabolism</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biomedical and Life Sciences</topic><topic>Bioplastics</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>chromosomes</topic><topic>Chromosomes, Fungal - chemistry</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Cloning</topic><topic>E coli</topic><topic>Endo-1,4-beta Xylanases - genetics</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>fermenters</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Fungal Proteins - genetics</topic><topic>Gene Expression</topic><topic>genes</topic><topic>Genetic aspects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Neomycin</topic><topic>Observations</topic><topic>Oxo-Acid-Lyases - genetics</topic><topic>Oxo-Acid-Lyases - metabolism</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>plastics</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Engineering</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Pseudozyma antarctica</topic><topic>Recombinant proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Science</topic><topic>Studies</topic><topic>Transgenes</topic><topic>Ustilaginales - enzymology</topic><topic>Ustilaginales - genetics</topic><topic>Ustilago maydis</topic><topic>Ustilago zeae</topic><topic>xylanases</topic><topic>xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Yarimizu, Tohru</creatorcontrib><creatorcontrib>Shinozaki, Yukiko</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Yoshida, Shigenobu</creatorcontrib><creatorcontrib>Koitabashi, Motoo</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Takashi</au><au>Morita, Tomotake</au><au>Koike, Hideaki</au><au>Yarimizu, Tohru</au><au>Shinozaki, Yukiko</au><au>Sameshima-Yamashita, Yuka</au><au>Yoshida, Shigenobu</au><au>Koitabashi, Motoo</au><au>Kitamoto, Hiroko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>100</volume><issue>7</issue><spage>3207</spage><epage>3217</epage><pages>3207-3217</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Yeast host–vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL⁻¹ of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL⁻¹ of PaE.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26695155</pmid><doi>10.1007/s00253-015-7232-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-04, Vol.100 (7), p.3207-3217
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1776662128
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects agar
Applied Genetics and Molecular Biotechnology
Basidiomycota
Batch Cell Culture Techniques
biodegradability
Biodegradable materials
Biodegradable Plastics - metabolism
Biodegradation
Biodegradation, Environmental
Biomedical and Life Sciences
Bioplastics
Bioreactors
Biotechnology
chromosomes
Chromosomes, Fungal - chemistry
Chromosomes, Fungal - metabolism
Cloning
E coli
Endo-1,4-beta Xylanases - genetics
Endo-1,4-beta Xylanases - metabolism
Enzyme kinetics
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
fermenters
Fungal Proteins - biosynthesis
Fungal Proteins - genetics
Gene Expression
genes
Genetic aspects
Kinases
Life Sciences
Microbial Genetics and Genomics
Microbiology
Neomycin
Observations
Oxo-Acid-Lyases - genetics
Oxo-Acid-Lyases - metabolism
Physiological aspects
Plasmids
Plasmids - chemistry
Plasmids - metabolism
plastics
Promoter Regions, Genetic
Protein Engineering
Protein synthesis
Proteins
Pseudozyma antarctica
Recombinant proteins
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Science
Studies
Transgenes
Ustilaginales - enzymology
Ustilaginales - genetics
Ustilago maydis
Ustilago zeae
xylanases
xylose
Xylose - metabolism
Yeast
Yeasts
title High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-level%20recombinant%20protein%20production%20by%20the%20basidiomycetous%20yeast%20Pseudozyma%20antarctica%20under%20a%20xylose-inducible%20xylanase%20promoter&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Watanabe,%20Takashi&rft.date=2016-04-01&rft.volume=100&rft.issue=7&rft.spage=3207&rft.epage=3217&rft.pages=3207-3217&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-7232-7&rft_dat=%3Cgale_proqu%3EA445911123%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772045205&rft_id=info:pmid/26695155&rft_galeid=A445911123&rfr_iscdi=true