Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite
Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 1 |
container_start_page | 232 |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 17 |
creator | Struve, Torben van de Flierdt, Tina Robinson, Laura F. Bradtmiller, Louisa I. Hines, Sophia K. Adkins, Jess F. Lambelet, Myriam Crocket, Kirsty C. Kreissig, Katharina Coles, Barry Auro, Maureen E. |
description | Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from |
doi_str_mv | 10.1002/2015GC006130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906665074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</originalsourceid><addsrcrecordid>eNp90bFOwzAQBuAIgUQpbDyAJRYGArYT2_GIqhKQECwwR058AVdJHOxEJRsLO8_Ik5BQhoqhk8-nT79Od0FwSvAlwZheUUxYusCYkwjvBTPCKAsppmJ_qz4MjrxfYUxixpJZ8PkAVg-16WtkvO1sC0g1qho8eKTKDhwqbJ2bBjSC986pojO2QbZEU9UYPXGNKtV0r-r3CxXU0HQelc7WyINaqyllUhqg_f74GntjqFMVUk692MZ0cBwclKrycPL3zoPnm-XT4ja8f0zvFtf3oYqljMJCKKGlKDVnUMQ6J5IB0XkkFRageZ7nSVwUlORJySKgnElKeUJKQRIsQUA0D843ua2zbz34LquNL6Aa5wfb-4wIwTmnhMQjPftHV7Z342pGJfGoGBa7leCxZImQk7rYqMJZ7x2UWetMrdyQEZxNl8u2LzfyaMPXpoJhp83SNF1SLEkU_QBLHpu_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764958794</pqid></control><display><type>article</type><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><source>Wiley Online Library Open Access</source><creator>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</creator><creatorcontrib>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</creatorcontrib><description>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications.
Key Points:
Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite
Successful neodymium isotope intercalibration
Reduction of sample volume requirements and workload</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/2015GC006130</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Abundance ; Adaptation ; Anion exchange ; Anions ; Aragonite ; Carbonates ; Chemical analysis ; Chemistry ; Chromatography ; Coral reefs ; Corals ; Deep sea ; Deep water ; deep‐sea corals ; extraction methods ; Geophysics ; GEOTRACES ; Intercalibration ; Ion exchange ; Ionization ; Isotope composition ; Isotopes ; Laboratories ; Labour ; Mass spectrometry ; Mass spectroscopy ; Methods ; Neodymium ; neodymium isotopes ; Protactinium ; Seawater ; Thorium ; Time series ; Tracers ; Uncertainty ; Uranium ; Water ; Water analysis ; Water depth</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</citedby><cites>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GC006130$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GC006130$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GC006130$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Struve, Torben</creatorcontrib><creatorcontrib>van de Flierdt, Tina</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Bradtmiller, Louisa I.</creatorcontrib><creatorcontrib>Hines, Sophia K.</creatorcontrib><creatorcontrib>Adkins, Jess F.</creatorcontrib><creatorcontrib>Lambelet, Myriam</creatorcontrib><creatorcontrib>Crocket, Kirsty C.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Coles, Barry</creatorcontrib><creatorcontrib>Auro, Maureen E.</creatorcontrib><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><title>Geochemistry, geophysics, geosystems : G3</title><description>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications.
Key Points:
Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite
Successful neodymium isotope intercalibration
Reduction of sample volume requirements and workload</description><subject>Abundance</subject><subject>Adaptation</subject><subject>Anion exchange</subject><subject>Anions</subject><subject>Aragonite</subject><subject>Carbonates</subject><subject>Chemical analysis</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>deep‐sea corals</subject><subject>extraction methods</subject><subject>Geophysics</subject><subject>GEOTRACES</subject><subject>Intercalibration</subject><subject>Ion exchange</subject><subject>Ionization</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Laboratories</subject><subject>Labour</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Neodymium</subject><subject>neodymium isotopes</subject><subject>Protactinium</subject><subject>Seawater</subject><subject>Thorium</subject><subject>Time series</subject><subject>Tracers</subject><subject>Uncertainty</subject><subject>Uranium</subject><subject>Water</subject><subject>Water analysis</subject><subject>Water depth</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90bFOwzAQBuAIgUQpbDyAJRYGArYT2_GIqhKQECwwR058AVdJHOxEJRsLO8_Ik5BQhoqhk8-nT79Od0FwSvAlwZheUUxYusCYkwjvBTPCKAsppmJ_qz4MjrxfYUxixpJZ8PkAVg-16WtkvO1sC0g1qho8eKTKDhwqbJ2bBjSC986pojO2QbZEU9UYPXGNKtV0r-r3CxXU0HQelc7WyINaqyllUhqg_f74GntjqFMVUk692MZ0cBwclKrycPL3zoPnm-XT4ja8f0zvFtf3oYqljMJCKKGlKDVnUMQ6J5IB0XkkFRageZ7nSVwUlORJySKgnElKeUJKQRIsQUA0D843ua2zbz34LquNL6Aa5wfb-4wIwTmnhMQjPftHV7Z342pGJfGoGBa7leCxZImQk7rYqMJZ7x2UWetMrdyQEZxNl8u2LzfyaMPXpoJhp83SNF1SLEkU_QBLHpu_</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Struve, Torben</creator><creator>van de Flierdt, Tina</creator><creator>Robinson, Laura F.</creator><creator>Bradtmiller, Louisa I.</creator><creator>Hines, Sophia K.</creator><creator>Adkins, Jess F.</creator><creator>Lambelet, Myriam</creator><creator>Crocket, Kirsty C.</creator><creator>Kreissig, Katharina</creator><creator>Coles, Barry</creator><creator>Auro, Maureen E.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201601</creationdate><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><author>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Adaptation</topic><topic>Anion exchange</topic><topic>Anions</topic><topic>Aragonite</topic><topic>Carbonates</topic><topic>Chemical analysis</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>deep‐sea corals</topic><topic>extraction methods</topic><topic>Geophysics</topic><topic>GEOTRACES</topic><topic>Intercalibration</topic><topic>Ion exchange</topic><topic>Ionization</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Laboratories</topic><topic>Labour</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Neodymium</topic><topic>neodymium isotopes</topic><topic>Protactinium</topic><topic>Seawater</topic><topic>Thorium</topic><topic>Time series</topic><topic>Tracers</topic><topic>Uncertainty</topic><topic>Uranium</topic><topic>Water</topic><topic>Water analysis</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Struve, Torben</creatorcontrib><creatorcontrib>van de Flierdt, Tina</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Bradtmiller, Louisa I.</creatorcontrib><creatorcontrib>Hines, Sophia K.</creatorcontrib><creatorcontrib>Adkins, Jess F.</creatorcontrib><creatorcontrib>Lambelet, Myriam</creatorcontrib><creatorcontrib>Crocket, Kirsty C.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Coles, Barry</creatorcontrib><creatorcontrib>Auro, Maureen E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Struve, Torben</au><au>van de Flierdt, Tina</au><au>Robinson, Laura F.</au><au>Bradtmiller, Louisa I.</au><au>Hines, Sophia K.</au><au>Adkins, Jess F.</au><au>Lambelet, Myriam</au><au>Crocket, Kirsty C.</au><au>Kreissig, Katharina</au><au>Coles, Barry</au><au>Auro, Maureen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2016-01</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>232</spage><epage>240</epage><pages>232-240</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications.
Key Points:
Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite
Successful neodymium isotope intercalibration
Reduction of sample volume requirements and workload</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015GC006130</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240 |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776662114 |
source | Wiley Online Library Open Access |
subjects | Abundance Adaptation Anion exchange Anions Aragonite Carbonates Chemical analysis Chemistry Chromatography Coral reefs Corals Deep sea Deep water deep‐sea corals extraction methods Geophysics GEOTRACES Intercalibration Ion exchange Ionization Isotope composition Isotopes Laboratories Labour Mass spectrometry Mass spectroscopy Methods Neodymium neodymium isotopes Protactinium Seawater Thorium Time series Tracers Uncertainty Uranium Water Water analysis Water depth |
title | Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neodymium%20isotope%20analyses%20after%20combined%20extraction%20of%20actinide%20and%20lanthanide%20elements%20from%20seawater%20and%20deep%E2%80%90sea%20coral%20aragonite&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Struve,%20Torben&rft.date=2016-01&rft.volume=17&rft.issue=1&rft.spage=232&rft.epage=240&rft.pages=232-240&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/2015GC006130&rft_dat=%3Cproquest_24P%3E1906665074%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764958794&rft_id=info:pmid/&rfr_iscdi=true |