Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite

Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240
Hauptverfasser: Struve, Torben, van de Flierdt, Tina, Robinson, Laura F., Bradtmiller, Louisa I., Hines, Sophia K., Adkins, Jess F., Lambelet, Myriam, Crocket, Kirsty C., Kreissig, Katharina, Coles, Barry, Auro, Maureen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 1
container_start_page 232
container_title Geochemistry, geophysics, geosystems : G3
container_volume 17
creator Struve, Torben
van de Flierdt, Tina
Robinson, Laura F.
Bradtmiller, Louisa I.
Hines, Sophia K.
Adkins, Jess F.
Lambelet, Myriam
Crocket, Kirsty C.
Kreissig, Katharina
Coles, Barry
Auro, Maureen E.
description Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from
doi_str_mv 10.1002/2015GC006130
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776662114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906665074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</originalsourceid><addsrcrecordid>eNp90bFOwzAQBuAIgUQpbDyAJRYGArYT2_GIqhKQECwwR058AVdJHOxEJRsLO8_Ik5BQhoqhk8-nT79Od0FwSvAlwZheUUxYusCYkwjvBTPCKAsppmJ_qz4MjrxfYUxixpJZ8PkAVg-16WtkvO1sC0g1qho8eKTKDhwqbJ2bBjSC986pojO2QbZEU9UYPXGNKtV0r-r3CxXU0HQelc7WyINaqyllUhqg_f74GntjqFMVUk692MZ0cBwclKrycPL3zoPnm-XT4ja8f0zvFtf3oYqljMJCKKGlKDVnUMQ6J5IB0XkkFRageZ7nSVwUlORJySKgnElKeUJKQRIsQUA0D843ua2zbz34LquNL6Aa5wfb-4wIwTmnhMQjPftHV7Z342pGJfGoGBa7leCxZImQk7rYqMJZ7x2UWetMrdyQEZxNl8u2LzfyaMPXpoJhp83SNF1SLEkU_QBLHpu_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764958794</pqid></control><display><type>article</type><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><source>Wiley Online Library Open Access</source><creator>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</creator><creatorcontrib>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</creatorcontrib><description>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from &lt;1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications. Key Points: Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite Successful neodymium isotope intercalibration Reduction of sample volume requirements and workload</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/2015GC006130</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Abundance ; Adaptation ; Anion exchange ; Anions ; Aragonite ; Carbonates ; Chemical analysis ; Chemistry ; Chromatography ; Coral reefs ; Corals ; Deep sea ; Deep water ; deep‐sea corals ; extraction methods ; Geophysics ; GEOTRACES ; Intercalibration ; Ion exchange ; Ionization ; Isotope composition ; Isotopes ; Laboratories ; Labour ; Mass spectrometry ; Mass spectroscopy ; Methods ; Neodymium ; neodymium isotopes ; Protactinium ; Seawater ; Thorium ; Time series ; Tracers ; Uncertainty ; Uranium ; Water ; Water analysis ; Water depth</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</citedby><cites>FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GC006130$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GC006130$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GC006130$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Struve, Torben</creatorcontrib><creatorcontrib>van de Flierdt, Tina</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Bradtmiller, Louisa I.</creatorcontrib><creatorcontrib>Hines, Sophia K.</creatorcontrib><creatorcontrib>Adkins, Jess F.</creatorcontrib><creatorcontrib>Lambelet, Myriam</creatorcontrib><creatorcontrib>Crocket, Kirsty C.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Coles, Barry</creatorcontrib><creatorcontrib>Auro, Maureen E.</creatorcontrib><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><title>Geochemistry, geophysics, geosystems : G3</title><description>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from &lt;1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications. Key Points: Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite Successful neodymium isotope intercalibration Reduction of sample volume requirements and workload</description><subject>Abundance</subject><subject>Adaptation</subject><subject>Anion exchange</subject><subject>Anions</subject><subject>Aragonite</subject><subject>Carbonates</subject><subject>Chemical analysis</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>deep‐sea corals</subject><subject>extraction methods</subject><subject>Geophysics</subject><subject>GEOTRACES</subject><subject>Intercalibration</subject><subject>Ion exchange</subject><subject>Ionization</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Laboratories</subject><subject>Labour</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Neodymium</subject><subject>neodymium isotopes</subject><subject>Protactinium</subject><subject>Seawater</subject><subject>Thorium</subject><subject>Time series</subject><subject>Tracers</subject><subject>Uncertainty</subject><subject>Uranium</subject><subject>Water</subject><subject>Water analysis</subject><subject>Water depth</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90bFOwzAQBuAIgUQpbDyAJRYGArYT2_GIqhKQECwwR058AVdJHOxEJRsLO8_Ik5BQhoqhk8-nT79Od0FwSvAlwZheUUxYusCYkwjvBTPCKAsppmJ_qz4MjrxfYUxixpJZ8PkAVg-16WtkvO1sC0g1qho8eKTKDhwqbJ2bBjSC986pojO2QbZEU9UYPXGNKtV0r-r3CxXU0HQelc7WyINaqyllUhqg_f74GntjqFMVUk692MZ0cBwclKrycPL3zoPnm-XT4ja8f0zvFtf3oYqljMJCKKGlKDVnUMQ6J5IB0XkkFRageZ7nSVwUlORJySKgnElKeUJKQRIsQUA0D843ua2zbz34LquNL6Aa5wfb-4wIwTmnhMQjPftHV7Z342pGJfGoGBa7leCxZImQk7rYqMJZ7x2UWetMrdyQEZxNl8u2LzfyaMPXpoJhp83SNF1SLEkU_QBLHpu_</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Struve, Torben</creator><creator>van de Flierdt, Tina</creator><creator>Robinson, Laura F.</creator><creator>Bradtmiller, Louisa I.</creator><creator>Hines, Sophia K.</creator><creator>Adkins, Jess F.</creator><creator>Lambelet, Myriam</creator><creator>Crocket, Kirsty C.</creator><creator>Kreissig, Katharina</creator><creator>Coles, Barry</creator><creator>Auro, Maureen E.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201601</creationdate><title>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</title><author>Struve, Torben ; van de Flierdt, Tina ; Robinson, Laura F. ; Bradtmiller, Louisa I. ; Hines, Sophia K. ; Adkins, Jess F. ; Lambelet, Myriam ; Crocket, Kirsty C. ; Kreissig, Katharina ; Coles, Barry ; Auro, Maureen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4993-c7a7d97fd65ec4db195e1db39a07ed6bbb84cc21b8f53e265922681f71809e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Adaptation</topic><topic>Anion exchange</topic><topic>Anions</topic><topic>Aragonite</topic><topic>Carbonates</topic><topic>Chemical analysis</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>deep‐sea corals</topic><topic>extraction methods</topic><topic>Geophysics</topic><topic>GEOTRACES</topic><topic>Intercalibration</topic><topic>Ion exchange</topic><topic>Ionization</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Laboratories</topic><topic>Labour</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Neodymium</topic><topic>neodymium isotopes</topic><topic>Protactinium</topic><topic>Seawater</topic><topic>Thorium</topic><topic>Time series</topic><topic>Tracers</topic><topic>Uncertainty</topic><topic>Uranium</topic><topic>Water</topic><topic>Water analysis</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Struve, Torben</creatorcontrib><creatorcontrib>van de Flierdt, Tina</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Bradtmiller, Louisa I.</creatorcontrib><creatorcontrib>Hines, Sophia K.</creatorcontrib><creatorcontrib>Adkins, Jess F.</creatorcontrib><creatorcontrib>Lambelet, Myriam</creatorcontrib><creatorcontrib>Crocket, Kirsty C.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Coles, Barry</creatorcontrib><creatorcontrib>Auro, Maureen E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Struve, Torben</au><au>van de Flierdt, Tina</au><au>Robinson, Laura F.</au><au>Bradtmiller, Louisa I.</au><au>Hines, Sophia K.</au><au>Adkins, Jess F.</au><au>Lambelet, Myriam</au><au>Crocket, Kirsty C.</au><au>Kreissig, Katharina</au><au>Coles, Barry</au><au>Auro, Maureen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2016-01</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>232</spage><epage>240</epage><pages>232-240</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor‐intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from &lt;1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa‐Th and U‐Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two‐stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (εNd = −9.20 ± 0.21 and −13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: εNd = −9.19 ± 0.57 and −13.14 ± 0.57). Furthermore, Nd isotope results for an in‐house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U‐Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U‐Pa‐Th and Nd, and can hence be readily implemented for a wide range of applications. Key Points: Combined extraction of Pa/U‐Th‐Nd from seawater and coralline aragonite Successful neodymium isotope intercalibration Reduction of sample volume requirements and workload</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015GC006130</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2016-01, Vol.17 (1), p.232-240
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_miscellaneous_1776662114
source Wiley Online Library Open Access
subjects Abundance
Adaptation
Anion exchange
Anions
Aragonite
Carbonates
Chemical analysis
Chemistry
Chromatography
Coral reefs
Corals
Deep sea
Deep water
deep‐sea corals
extraction methods
Geophysics
GEOTRACES
Intercalibration
Ion exchange
Ionization
Isotope composition
Isotopes
Laboratories
Labour
Mass spectrometry
Mass spectroscopy
Methods
Neodymium
neodymium isotopes
Protactinium
Seawater
Thorium
Time series
Tracers
Uncertainty
Uranium
Water
Water analysis
Water depth
title Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neodymium%20isotope%20analyses%20after%20combined%20extraction%20of%20actinide%20and%20lanthanide%20elements%20from%20seawater%20and%20deep%E2%80%90sea%20coral%20aragonite&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Struve,%20Torben&rft.date=2016-01&rft.volume=17&rft.issue=1&rft.spage=232&rft.epage=240&rft.pages=232-240&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/2015GC006130&rft_dat=%3Cproquest_24P%3E1906665074%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764958794&rft_id=info:pmid/&rfr_iscdi=true