Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection
In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach–Zehnder-type optical waveguide as a sensing device for influ...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2016-02, Vol.178 (4), p.687-694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 4 |
container_start_page | 687 |
container_title | Applied biochemistry and biotechnology |
container_volume | 178 |
creator | Sakamoto, Hiroaki Minpou, Yuma Sawai, Takayuki Enami, Yasufumi Suye, Shin-ichiro |
description | In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach–Zehnder-type optical waveguide as a sensing device for influenza virus detection. However, it is impossible to detect a 100-nm-size virus using a sol-gel optical biosensor because sol-gel glass has a pore size of only a few nanometers, which makes it impossible for the virus to diffuse into the silica thin film. In order to construct the influenza-specific Mach–Zehnder optical biosensor for influenza detection, a stable antibody immobilization method with resulting high density on the sol-gel surface is strongly required. In this study, the sol-gel glass surface was modified with amino and carboxyl groups, and an anti-H1N1/HA1 antibody was covalently immobilized using a cross-linking agent. We successfully prepared a carboxyl-modified sol-gel surface, using NHS/EDC as the cross-linker, for antibody immobilization, and confirmed the detection of influenza virus using the antibody-immobilized sol-gel glass. After treatment with a 100 μg/mL influenza virus solution for 15 min, a peak wavelength shift (~24 nm) was observed in the output light spectrum. |
doi_str_mv | 10.1007/s12010-015-1902-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776659564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770876611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-659e8fd49902f6d2ed66540ef3d068a82549791fb42c455c54f087f690dccad13</originalsourceid><addsrcrecordid>eNqNks1uFSEYhonR2GP1AtzoJG7coMABZlhq_WtS7aI9mrghFD5OaebAEWaaHlfeg3folcg4tTEujCtCeN6HfHk_hB5S8owS0j4vlBFKMKECU0UYvrqFFlQIhQlT9DZaENYuMWOd2kP3SrkghLJOtHfRHpNcdYTxBQof0iX0zfF2CNb0zcuQCsQS4ro52ZUBNs3q1-W9sec_vn3_DOfRQcanuy3cZD6ZS1iPwUHjU24Oo-9HiF9N8zHksTSvYAA7hBTvozve9AUeXJ_7aPXm9enBO3x0_Pbw4MURtkKKAUuhoPOOqzqQl46Bk1JwAn7piOxMxwRXraL-jDPLhbCCe9K1XirirDWOLvfR09m7zenLCGXQm1As9L2JkMaiadtWoxKS_w9a3VLSyfrkL_QijTnWQSaKci47NgnpTNmcSsng9TaHjck7TYmeKtNzZbpWpqfK9FXNPLo2j2cbcDeJ3x1VgM1AqU9xDfmPr_9hfTyHvEnarHMoenVSIVmXgBKp2uVPOL-q2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771446824</pqid></control><display><type>article</type><title>Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Sakamoto, Hiroaki ; Minpou, Yuma ; Sawai, Takayuki ; Enami, Yasufumi ; Suye, Shin-ichiro</creator><creatorcontrib>Sakamoto, Hiroaki ; Minpou, Yuma ; Sawai, Takayuki ; Enami, Yasufumi ; Suye, Shin-ichiro</creatorcontrib><description>In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach–Zehnder-type optical waveguide as a sensing device for influenza virus detection. However, it is impossible to detect a 100-nm-size virus using a sol-gel optical biosensor because sol-gel glass has a pore size of only a few nanometers, which makes it impossible for the virus to diffuse into the silica thin film. In order to construct the influenza-specific Mach–Zehnder optical biosensor for influenza detection, a stable antibody immobilization method with resulting high density on the sol-gel surface is strongly required. In this study, the sol-gel glass surface was modified with amino and carboxyl groups, and an anti-H1N1/HA1 antibody was covalently immobilized using a cross-linking agent. We successfully prepared a carboxyl-modified sol-gel surface, using NHS/EDC as the cross-linker, for antibody immobilization, and confirmed the detection of influenza virus using the antibody-immobilized sol-gel glass. After treatment with a 100 μg/mL influenza virus solution for 15 min, a peak wavelength shift (~24 nm) was observed in the output light spectrum.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-015-1902-x</identifier><identifier>PMID: 26498024</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>antibodies ; Antigen-Antibody Reactions ; Biochemistry ; Biosensing Techniques ; Biosensors ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; cross-linking reagents ; disease outbreaks ; Enzyme-Linked Immunosorbent Assay ; Epidemics ; glass ; Influenza ; Influenza A virus ; Influenza A Virus, H1N1 Subtype - isolation & purification ; Influenza virus ; Optical properties ; Optics and Photonics - instrumentation ; Pore size ; porosity ; Silica ; Thin films ; Viruses ; Wave power ; wavelengths</subject><ispartof>Applied biochemistry and biotechnology, 2016-02, Vol.178 (4), p.687-694</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-659e8fd49902f6d2ed66540ef3d068a82549791fb42c455c54f087f690dccad13</citedby><cites>FETCH-LOGICAL-c565t-659e8fd49902f6d2ed66540ef3d068a82549791fb42c455c54f087f690dccad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-015-1902-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-015-1902-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26498024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamoto, Hiroaki</creatorcontrib><creatorcontrib>Minpou, Yuma</creatorcontrib><creatorcontrib>Sawai, Takayuki</creatorcontrib><creatorcontrib>Enami, Yasufumi</creatorcontrib><creatorcontrib>Suye, Shin-ichiro</creatorcontrib><title>Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach–Zehnder-type optical waveguide as a sensing device for influenza virus detection. However, it is impossible to detect a 100-nm-size virus using a sol-gel optical biosensor because sol-gel glass has a pore size of only a few nanometers, which makes it impossible for the virus to diffuse into the silica thin film. In order to construct the influenza-specific Mach–Zehnder optical biosensor for influenza detection, a stable antibody immobilization method with resulting high density on the sol-gel surface is strongly required. In this study, the sol-gel glass surface was modified with amino and carboxyl groups, and an anti-H1N1/HA1 antibody was covalently immobilized using a cross-linking agent. We successfully prepared a carboxyl-modified sol-gel surface, using NHS/EDC as the cross-linker, for antibody immobilization, and confirmed the detection of influenza virus using the antibody-immobilized sol-gel glass. After treatment with a 100 μg/mL influenza virus solution for 15 min, a peak wavelength shift (~24 nm) was observed in the output light spectrum.</description><subject>antibodies</subject><subject>Antigen-Antibody Reactions</subject><subject>Biochemistry</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>cross-linking reagents</subject><subject>disease outbreaks</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Epidemics</subject><subject>glass</subject><subject>Influenza</subject><subject>Influenza A virus</subject><subject>Influenza A Virus, H1N1 Subtype - isolation & purification</subject><subject>Influenza virus</subject><subject>Optical properties</subject><subject>Optics and Photonics - instrumentation</subject><subject>Pore size</subject><subject>porosity</subject><subject>Silica</subject><subject>Thin films</subject><subject>Viruses</subject><subject>Wave power</subject><subject>wavelengths</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1uFSEYhonR2GP1AtzoJG7coMABZlhq_WtS7aI9mrghFD5OaebAEWaaHlfeg3folcg4tTEujCtCeN6HfHk_hB5S8owS0j4vlBFKMKECU0UYvrqFFlQIhQlT9DZaENYuMWOd2kP3SrkghLJOtHfRHpNcdYTxBQof0iX0zfF2CNb0zcuQCsQS4ro52ZUBNs3q1-W9sec_vn3_DOfRQcanuy3cZD6ZS1iPwUHjU24Oo-9HiF9N8zHksTSvYAA7hBTvozve9AUeXJ_7aPXm9enBO3x0_Pbw4MURtkKKAUuhoPOOqzqQl46Bk1JwAn7piOxMxwRXraL-jDPLhbCCe9K1XirirDWOLvfR09m7zenLCGXQm1As9L2JkMaiadtWoxKS_w9a3VLSyfrkL_QijTnWQSaKci47NgnpTNmcSsng9TaHjck7TYmeKtNzZbpWpqfK9FXNPLo2j2cbcDeJ3x1VgM1AqU9xDfmPr_9hfTyHvEnarHMoenVSIVmXgBKp2uVPOL-q2w</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Sakamoto, Hiroaki</creator><creator>Minpou, Yuma</creator><creator>Sawai, Takayuki</creator><creator>Enami, Yasufumi</creator><creator>Suye, Shin-ichiro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20160201</creationdate><title>Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection</title><author>Sakamoto, Hiroaki ; Minpou, Yuma ; Sawai, Takayuki ; Enami, Yasufumi ; Suye, Shin-ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-659e8fd49902f6d2ed66540ef3d068a82549791fb42c455c54f087f690dccad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>antibodies</topic><topic>Antigen-Antibody Reactions</topic><topic>Biochemistry</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>cross-linking reagents</topic><topic>disease outbreaks</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Epidemics</topic><topic>glass</topic><topic>Influenza</topic><topic>Influenza A virus</topic><topic>Influenza A Virus, H1N1 Subtype - isolation & purification</topic><topic>Influenza virus</topic><topic>Optical properties</topic><topic>Optics and Photonics - instrumentation</topic><topic>Pore size</topic><topic>porosity</topic><topic>Silica</topic><topic>Thin films</topic><topic>Viruses</topic><topic>Wave power</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamoto, Hiroaki</creatorcontrib><creatorcontrib>Minpou, Yuma</creatorcontrib><creatorcontrib>Sawai, Takayuki</creatorcontrib><creatorcontrib>Enami, Yasufumi</creatorcontrib><creatorcontrib>Suye, Shin-ichiro</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamoto, Hiroaki</au><au>Minpou, Yuma</au><au>Sawai, Takayuki</au><au>Enami, Yasufumi</au><au>Suye, Shin-ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>178</volume><issue>4</issue><spage>687</spage><epage>694</epage><pages>687-694</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>In order to minimize the damage from viral epidemics, early detection of the causative agent of a viral epidemic and prevention of its immediate spread are urgent social demands. Therefore, in this study, we evaluated the utility of a Mach–Zehnder-type optical waveguide as a sensing device for influenza virus detection. However, it is impossible to detect a 100-nm-size virus using a sol-gel optical biosensor because sol-gel glass has a pore size of only a few nanometers, which makes it impossible for the virus to diffuse into the silica thin film. In order to construct the influenza-specific Mach–Zehnder optical biosensor for influenza detection, a stable antibody immobilization method with resulting high density on the sol-gel surface is strongly required. In this study, the sol-gel glass surface was modified with amino and carboxyl groups, and an anti-H1N1/HA1 antibody was covalently immobilized using a cross-linking agent. We successfully prepared a carboxyl-modified sol-gel surface, using NHS/EDC as the cross-linker, for antibody immobilization, and confirmed the detection of influenza virus using the antibody-immobilized sol-gel glass. After treatment with a 100 μg/mL influenza virus solution for 15 min, a peak wavelength shift (~24 nm) was observed in the output light spectrum.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26498024</pmid><doi>10.1007/s12010-015-1902-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2016-02, Vol.178 (4), p.687-694 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776659564 |
source | MEDLINE; SpringerLink Journals |
subjects | antibodies Antigen-Antibody Reactions Biochemistry Biosensing Techniques Biosensors Biotechnology Chemistry Chemistry and Materials Science cross-linking reagents disease outbreaks Enzyme-Linked Immunosorbent Assay Epidemics glass Influenza Influenza A virus Influenza A Virus, H1N1 Subtype - isolation & purification Influenza virus Optical properties Optics and Photonics - instrumentation Pore size porosity Silica Thin films Viruses Wave power wavelengths |
title | Novel Optical Biosensing System Using Mach–Zehnder-Type Optical Waveguide for Influenza Virus Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Optical%20Biosensing%20System%20Using%20Mach%E2%80%93Zehnder-Type%20Optical%20Waveguide%20for%20Influenza%20Virus%20Detection&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Sakamoto,%20Hiroaki&rft.date=2016-02-01&rft.volume=178&rft.issue=4&rft.spage=687&rft.epage=694&rft.pages=687-694&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-015-1902-x&rft_dat=%3Cproquest_cross%3E1770876611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771446824&rft_id=info:pmid/26498024&rfr_iscdi=true |