An asymmetric logistic regression model for ecological data

Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2016-02, Vol.7 (2), p.249-260
Hauptverfasser: Komori, Osamu, Eguchi, Shinto, Ikeda, Shiro, Okamura, Hiroshi, Ichinokawa, Momoko, Nakayama, Shinichiro, Dray, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 249
container_title Methods in ecology and evolution
container_volume 7
creator Komori, Osamu
Eguchi, Shinto
Ikeda, Shiro
Okamura, Hiroshi
Ichinokawa, Momoko
Nakayama, Shinichiro
Dray, Stephane
description Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data. To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R. Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model. In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.
doi_str_mv 10.1111/2041-210X.12473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776654986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958675861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOObOXgtevHTLS9K0wdMY8wdMvCh4C2majo60mUmH7L83tSLiQd_lPd77fL88vghdAp5DrAXBDFIC-HUOhOX0BE2-N6c_5nM0C2GHY9FCYMIm6GbZJSoc29b0vtGJddsm9HHwZutNCI3rktZVxia184nRbgC0skmlenWBzmplg5l99Sl6uV0_r-7TzdPdw2q5SXWWMZoWpcKkykul8xJEXulCcF2KsjaZAWBKQ6GBEuCMi6qiQpSq1ioeTI0zIIJO0fXou_fu7WBCL9smaGOt6ow7BAl5znnGRMEjevUL3bmD7-J3EgSwgmKSiT-paCVIkYnBazFS2rsQvKnl3jet8kcJWA6pyyFXOeQqP1OPCj4q3htrjv_h8nG9pqPwAyVMgjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766928596</pqid></control><display><type>article</type><title>An asymmetric logistic regression model for ecological data</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane</creator><contributor>Dray, Stephane</contributor><creatorcontrib>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane ; Dray, Stephane</creatorcontrib><description>Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data. To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R. Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model. In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12473</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Asymmetry ; Binary data ; Computer simulation ; ecological binary data ; Ecological monitoring ; Environmental studies ; Fisheries ; Generalized linear models ; Logistics ; Mathematical models ; mixed effect logistic regression ; model fitting ; Performance prediction ; Regression analysis ; variable selection</subject><ispartof>Methods in ecology and evolution, 2016-02, Vol.7 (2), p.249-260</ispartof><rights>2015 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society.</rights><rights>Methods in Ecology and Evolution © 2016 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</citedby><cites>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12473$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12473$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><contributor>Dray, Stephane</contributor><creatorcontrib>Komori, Osamu</creatorcontrib><creatorcontrib>Eguchi, Shinto</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Okamura, Hiroshi</creatorcontrib><creatorcontrib>Ichinokawa, Momoko</creatorcontrib><creatorcontrib>Nakayama, Shinichiro</creatorcontrib><creatorcontrib>Dray, Stephane</creatorcontrib><title>An asymmetric logistic regression model for ecological data</title><title>Methods in ecology and evolution</title><description>Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data. To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R. Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model. In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</description><subject>Asymmetry</subject><subject>Binary data</subject><subject>Computer simulation</subject><subject>ecological binary data</subject><subject>Ecological monitoring</subject><subject>Environmental studies</subject><subject>Fisheries</subject><subject>Generalized linear models</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>mixed effect logistic regression</subject><subject>model fitting</subject><subject>Performance prediction</subject><subject>Regression analysis</subject><subject>variable selection</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAUx4MoOObOXgtevHTLS9K0wdMY8wdMvCh4C2majo60mUmH7L83tSLiQd_lPd77fL88vghdAp5DrAXBDFIC-HUOhOX0BE2-N6c_5nM0C2GHY9FCYMIm6GbZJSoc29b0vtGJddsm9HHwZutNCI3rktZVxia184nRbgC0skmlenWBzmplg5l99Sl6uV0_r-7TzdPdw2q5SXWWMZoWpcKkykul8xJEXulCcF2KsjaZAWBKQ6GBEuCMi6qiQpSq1ioeTI0zIIJO0fXou_fu7WBCL9smaGOt6ow7BAl5znnGRMEjevUL3bmD7-J3EgSwgmKSiT-paCVIkYnBazFS2rsQvKnl3jet8kcJWA6pyyFXOeQqP1OPCj4q3htrjv_h8nG9pqPwAyVMgjA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Komori, Osamu</creator><creator>Eguchi, Shinto</creator><creator>Ikeda, Shiro</creator><creator>Okamura, Hiroshi</creator><creator>Ichinokawa, Momoko</creator><creator>Nakayama, Shinichiro</creator><creator>Dray, Stephane</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201602</creationdate><title>An asymmetric logistic regression model for ecological data</title><author>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Binary data</topic><topic>Computer simulation</topic><topic>ecological binary data</topic><topic>Ecological monitoring</topic><topic>Environmental studies</topic><topic>Fisheries</topic><topic>Generalized linear models</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>mixed effect logistic regression</topic><topic>model fitting</topic><topic>Performance prediction</topic><topic>Regression analysis</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komori, Osamu</creatorcontrib><creatorcontrib>Eguchi, Shinto</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Okamura, Hiroshi</creatorcontrib><creatorcontrib>Ichinokawa, Momoko</creatorcontrib><creatorcontrib>Nakayama, Shinichiro</creatorcontrib><creatorcontrib>Dray, Stephane</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komori, Osamu</au><au>Eguchi, Shinto</au><au>Ikeda, Shiro</au><au>Okamura, Hiroshi</au><au>Ichinokawa, Momoko</au><au>Nakayama, Shinichiro</au><au>Dray, Stephane</au><au>Dray, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymmetric logistic regression model for ecological data</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2016-02</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data. To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R. Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model. In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.12473</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2016-02, Vol.7 (2), p.249-260
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_miscellaneous_1776654986
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Asymmetry
Binary data
Computer simulation
ecological binary data
Ecological monitoring
Environmental studies
Fisheries
Generalized linear models
Logistics
Mathematical models
mixed effect logistic regression
model fitting
Performance prediction
Regression analysis
variable selection
title An asymmetric logistic regression model for ecological data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymmetric%20logistic%20regression%20model%20for%20ecological%20data&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Komori,%20Osamu&rft.date=2016-02&rft.volume=7&rft.issue=2&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12473&rft_dat=%3Cproquest_cross%3E3958675861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766928596&rft_id=info:pmid/&rfr_iscdi=true