An asymmetric logistic regression model for ecological data
Summary Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2016-02, Vol.7 (2), p.249-260 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 249 |
container_title | Methods in ecology and evolution |
container_volume | 7 |
creator | Komori, Osamu Eguchi, Shinto Ikeda, Shiro Okamura, Hiroshi Ichinokawa, Momoko Nakayama, Shinichiro Dray, Stephane |
description | Summary
Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data.
To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R.
Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model.
In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection. |
doi_str_mv | 10.1111/2041-210X.12473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776654986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958675861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOObOXgtevHTLS9K0wdMY8wdMvCh4C2majo60mUmH7L83tSLiQd_lPd77fL88vghdAp5DrAXBDFIC-HUOhOX0BE2-N6c_5nM0C2GHY9FCYMIm6GbZJSoc29b0vtGJddsm9HHwZutNCI3rktZVxia184nRbgC0skmlenWBzmplg5l99Sl6uV0_r-7TzdPdw2q5SXWWMZoWpcKkykul8xJEXulCcF2KsjaZAWBKQ6GBEuCMi6qiQpSq1ioeTI0zIIJO0fXou_fu7WBCL9smaGOt6ow7BAl5znnGRMEjevUL3bmD7-J3EgSwgmKSiT-paCVIkYnBazFS2rsQvKnl3jet8kcJWA6pyyFXOeQqP1OPCj4q3htrjv_h8nG9pqPwAyVMgjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766928596</pqid></control><display><type>article</type><title>An asymmetric logistic regression model for ecological data</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane</creator><contributor>Dray, Stephane</contributor><creatorcontrib>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane ; Dray, Stephane</creatorcontrib><description>Summary
Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data.
To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R.
Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model.
In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12473</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>Asymmetry ; Binary data ; Computer simulation ; ecological binary data ; Ecological monitoring ; Environmental studies ; Fisheries ; Generalized linear models ; Logistics ; Mathematical models ; mixed effect logistic regression ; model fitting ; Performance prediction ; Regression analysis ; variable selection</subject><ispartof>Methods in ecology and evolution, 2016-02, Vol.7 (2), p.249-260</ispartof><rights>2015 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.</rights><rights>Methods in Ecology and Evolution © 2016 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</citedby><cites>FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12473$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12473$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><contributor>Dray, Stephane</contributor><creatorcontrib>Komori, Osamu</creatorcontrib><creatorcontrib>Eguchi, Shinto</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Okamura, Hiroshi</creatorcontrib><creatorcontrib>Ichinokawa, Momoko</creatorcontrib><creatorcontrib>Nakayama, Shinichiro</creatorcontrib><creatorcontrib>Dray, Stephane</creatorcontrib><title>An asymmetric logistic regression model for ecological data</title><title>Methods in ecology and evolution</title><description>Summary
Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data.
To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R.
Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model.
In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</description><subject>Asymmetry</subject><subject>Binary data</subject><subject>Computer simulation</subject><subject>ecological binary data</subject><subject>Ecological monitoring</subject><subject>Environmental studies</subject><subject>Fisheries</subject><subject>Generalized linear models</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>mixed effect logistic regression</subject><subject>model fitting</subject><subject>Performance prediction</subject><subject>Regression analysis</subject><subject>variable selection</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAUx4MoOObOXgtevHTLS9K0wdMY8wdMvCh4C2majo60mUmH7L83tSLiQd_lPd77fL88vghdAp5DrAXBDFIC-HUOhOX0BE2-N6c_5nM0C2GHY9FCYMIm6GbZJSoc29b0vtGJddsm9HHwZutNCI3rktZVxia184nRbgC0skmlenWBzmplg5l99Sl6uV0_r-7TzdPdw2q5SXWWMZoWpcKkykul8xJEXulCcF2KsjaZAWBKQ6GBEuCMi6qiQpSq1ioeTI0zIIJO0fXou_fu7WBCL9smaGOt6ow7BAl5znnGRMEjevUL3bmD7-J3EgSwgmKSiT-paCVIkYnBazFS2rsQvKnl3jet8kcJWA6pyyFXOeQqP1OPCj4q3htrjv_h8nG9pqPwAyVMgjA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Komori, Osamu</creator><creator>Eguchi, Shinto</creator><creator>Ikeda, Shiro</creator><creator>Okamura, Hiroshi</creator><creator>Ichinokawa, Momoko</creator><creator>Nakayama, Shinichiro</creator><creator>Dray, Stephane</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201602</creationdate><title>An asymmetric logistic regression model for ecological data</title><author>Komori, Osamu ; Eguchi, Shinto ; Ikeda, Shiro ; Okamura, Hiroshi ; Ichinokawa, Momoko ; Nakayama, Shinichiro ; Dray, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5543-8ba02d7bac7b197dc896cb9bfe5e114ac18c13216469dd399bafca14aef051293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Binary data</topic><topic>Computer simulation</topic><topic>ecological binary data</topic><topic>Ecological monitoring</topic><topic>Environmental studies</topic><topic>Fisheries</topic><topic>Generalized linear models</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>mixed effect logistic regression</topic><topic>model fitting</topic><topic>Performance prediction</topic><topic>Regression analysis</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komori, Osamu</creatorcontrib><creatorcontrib>Eguchi, Shinto</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Okamura, Hiroshi</creatorcontrib><creatorcontrib>Ichinokawa, Momoko</creatorcontrib><creatorcontrib>Nakayama, Shinichiro</creatorcontrib><creatorcontrib>Dray, Stephane</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komori, Osamu</au><au>Eguchi, Shinto</au><au>Ikeda, Shiro</au><au>Okamura, Hiroshi</au><au>Ichinokawa, Momoko</au><au>Nakayama, Shinichiro</au><au>Dray, Stephane</au><au>Dray, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymmetric logistic regression model for ecological data</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2016-02</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary
Binary data are popular in ecological and environmental studies; however, due to various uncertainties and complexities present in data sets, the standard generalized linear model with a binomial error distribution often demonstrates insufficient predictive performance when analysing binary and proportional data.
To address this difficulty, we propose an asymmetric logistic regression model that uses a new parameter to account for data complexity. We observe that this parameter controls the model's asymmetry and is important for adjusting the weights associated with observed data in order to improve model fitting. This model includes the ordinary logistic regression model as a special case. It is easily implemented using a slight modification of glm or glmer in statistical software R.
Simulation studies suggest that our new approach outperforms a traditional approach in terms of both predictive accuracy and variable selection. In a case study involving fisheries data, we found that the annual catch amount had a greater impact on stock status prediction, and improved predictive capability was supported with a smaller AIC compared to a generalized linear model.
In summary, our method can enhance the applicability of a generalized linear model to various ecological problems using a slight modification, and significantly improves model fitting and model selection.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.12473</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2016-02, Vol.7 (2), p.249-260 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_proquest_miscellaneous_1776654986 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Asymmetry Binary data Computer simulation ecological binary data Ecological monitoring Environmental studies Fisheries Generalized linear models Logistics Mathematical models mixed effect logistic regression model fitting Performance prediction Regression analysis variable selection |
title | An asymmetric logistic regression model for ecological data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymmetric%20logistic%20regression%20model%20for%20ecological%20data&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Komori,%20Osamu&rft.date=2016-02&rft.volume=7&rft.issue=2&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12473&rft_dat=%3Cproquest_cross%3E3958675861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766928596&rft_id=info:pmid/&rfr_iscdi=true |