SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice
A high-throughput screen identified a small molecule that promoted inclusion of SMN2 exon 7, increased SMN2 protein levels and extended survival in a SMA mouse model through stabilization of the interaction between SMN2 pre-mRNA and U1 snRNP complex. Spinal muscular atrophy (SMA), which results from...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2015-07, Vol.11 (7), p.511-517 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 7 |
container_start_page | 511 |
container_title | Nature chemical biology |
container_volume | 11 |
creator | Palacino, James Swalley, Susanne E Song, Cheng Cheung, Atwood K Shu, Lei Zhang, Xiaolu Van Hoosear, Mailin Shin, Youngah Chin, Donovan N Keller, Caroline Gubser Beibel, Martin Renaud, Nicole A Smith, Thomas M Salcius, Michael Shi, Xiaoying Hild, Marc Servais, Rebecca Jain, Monish Deng, Lin Bullock, Caroline McLellan, Michael Schuierer, Sven Murphy, Leo Blommers, Marcel J J Blaustein, Cecile Berenshteyn, Frada Lacoste, Arnaud Thomas, Jason R Roma, Guglielmo Michaud, Gregory A Tseng, Brian S Porter, Jeffery A Myer, Vic E Tallarico, John A Hamann, Lawrence G Curtis, Daniel Fishman, Mark C Dietrich, William F Dales, Natalie A Sivasankaran, Rajeev |
description | A high-throughput screen identified a small molecule that promoted inclusion of SMN2 exon 7, increased SMN2 protein levels and extended survival in a SMA mouse model through stabilization of the interaction between SMN2 pre-mRNA and U1 snRNP complex.
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (
SMN1
) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (
SMN2
) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of
SMN2
splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the
SMN2
pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5′ splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule–mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases. |
doi_str_mv | 10.1038/nchembio.1837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776653852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957162881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-2510ba9c4e9b398ddbdf3f9700a3ff10f5d186e5d86674678a856a85de45d0b3</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4Mobk6PXqXgxUtn0jSv6XGIv2Cb4Oa5pE3qOtpkJu3Bm_-D_6F_iRn7gYjg4fEeyYfP4_FF6JzgIcGUX-tioZq8MkPCaXKA-oSxKIxjSA_3M8M9dOLcEmMKQPgx6kWAKU4i3kfj2WQaBW5VV4UKGiO7WrTGukDphdD-6YV8fXyurAqb5-koEM6ZohJtZXQgtAysckWngtlkFDRecIqOSlE7dbbtAzS_u53fPITjp_vHm9E4LGKgbRgxgnORFrFKc5pyKXNZ0jJNMBa0LAkumSQcFJMcIIkh4YIz8CVVzCTO6QBdbbQra9465dqsqVyh6lpoZTqXkSQBYJSz6H8UUhyRBOI1evkLXZrOan-HFwJEEAOnngo3VGGNc1aV2cpWjbDvGcHZOpBsF0i2DsTzF1trlzdK7uldAh4YbgDnv_Srsj_W_mn8BrtElms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766264683</pqid></control><display><type>article</type><title>SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Palacino, James ; Swalley, Susanne E ; Song, Cheng ; Cheung, Atwood K ; Shu, Lei ; Zhang, Xiaolu ; Van Hoosear, Mailin ; Shin, Youngah ; Chin, Donovan N ; Keller, Caroline Gubser ; Beibel, Martin ; Renaud, Nicole A ; Smith, Thomas M ; Salcius, Michael ; Shi, Xiaoying ; Hild, Marc ; Servais, Rebecca ; Jain, Monish ; Deng, Lin ; Bullock, Caroline ; McLellan, Michael ; Schuierer, Sven ; Murphy, Leo ; Blommers, Marcel J J ; Blaustein, Cecile ; Berenshteyn, Frada ; Lacoste, Arnaud ; Thomas, Jason R ; Roma, Guglielmo ; Michaud, Gregory A ; Tseng, Brian S ; Porter, Jeffery A ; Myer, Vic E ; Tallarico, John A ; Hamann, Lawrence G ; Curtis, Daniel ; Fishman, Mark C ; Dietrich, William F ; Dales, Natalie A ; Sivasankaran, Rajeev</creator><creatorcontrib>Palacino, James ; Swalley, Susanne E ; Song, Cheng ; Cheung, Atwood K ; Shu, Lei ; Zhang, Xiaolu ; Van Hoosear, Mailin ; Shin, Youngah ; Chin, Donovan N ; Keller, Caroline Gubser ; Beibel, Martin ; Renaud, Nicole A ; Smith, Thomas M ; Salcius, Michael ; Shi, Xiaoying ; Hild, Marc ; Servais, Rebecca ; Jain, Monish ; Deng, Lin ; Bullock, Caroline ; McLellan, Michael ; Schuierer, Sven ; Murphy, Leo ; Blommers, Marcel J J ; Blaustein, Cecile ; Berenshteyn, Frada ; Lacoste, Arnaud ; Thomas, Jason R ; Roma, Guglielmo ; Michaud, Gregory A ; Tseng, Brian S ; Porter, Jeffery A ; Myer, Vic E ; Tallarico, John A ; Hamann, Lawrence G ; Curtis, Daniel ; Fishman, Mark C ; Dietrich, William F ; Dales, Natalie A ; Sivasankaran, Rajeev</creatorcontrib><description>A high-throughput screen identified a small molecule that promoted inclusion of SMN2 exon 7, increased SMN2 protein levels and extended survival in a SMA mouse model through stabilization of the interaction between SMN2 pre-mRNA and U1 snRNP complex.
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (
SMN1
) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (
SMN2
) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of
SMN2
splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the
SMN2
pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5′ splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule–mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.1837</identifier><identifier>PMID: 26030728</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/6 ; 38/47 ; 631/337/1645/1792 ; 631/92/609 ; 631/92/613 ; 692/699/375 ; 82/103 ; Alternative Splicing ; Animals ; Binding Sites ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry/Food Science ; Disease Models, Animal ; Female ; Gene Expression ; Humans ; Mice ; Mice, Transgenic ; Models, Molecular ; Molecular biology ; Mortality ; Muscular Atrophy, Spinal - drug therapy ; Muscular Atrophy, Spinal - metabolism ; Muscular Atrophy, Spinal - mortality ; Muscular Atrophy, Spinal - pathology ; Neurological disorders ; Protein Binding - drug effects ; Protein Stability - drug effects ; Proteolysis ; Ribonucleoprotein, U1 Small Nuclear - agonists ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoprotein, U1 Small Nuclear - metabolism ; RNA Precursors - agonists ; RNA Precursors - chemistry ; RNA Precursors - metabolism ; RNA, Double-Stranded - agonists ; RNA, Double-Stranded - chemistry ; RNA, Double-Stranded - metabolism ; Rodents ; Small Molecule Libraries - chemical synthesis ; Small Molecule Libraries - metabolism ; Small Molecule Libraries - pharmacology ; Survival ; Survival Analysis ; Survival of Motor Neuron 2 Protein - chemistry ; Survival of Motor Neuron 2 Protein - genetics ; Survival of Motor Neuron 2 Protein - metabolism</subject><ispartof>Nature chemical biology, 2015-07, Vol.11 (7), p.511-517</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-2510ba9c4e9b398ddbdf3f9700a3ff10f5d186e5d86674678a856a85de45d0b3</citedby><cites>FETCH-LOGICAL-c463t-2510ba9c4e9b398ddbdf3f9700a3ff10f5d186e5d86674678a856a85de45d0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26030728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacino, James</creatorcontrib><creatorcontrib>Swalley, Susanne E</creatorcontrib><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Cheung, Atwood K</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Van Hoosear, Mailin</creatorcontrib><creatorcontrib>Shin, Youngah</creatorcontrib><creatorcontrib>Chin, Donovan N</creatorcontrib><creatorcontrib>Keller, Caroline Gubser</creatorcontrib><creatorcontrib>Beibel, Martin</creatorcontrib><creatorcontrib>Renaud, Nicole A</creatorcontrib><creatorcontrib>Smith, Thomas M</creatorcontrib><creatorcontrib>Salcius, Michael</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Hild, Marc</creatorcontrib><creatorcontrib>Servais, Rebecca</creatorcontrib><creatorcontrib>Jain, Monish</creatorcontrib><creatorcontrib>Deng, Lin</creatorcontrib><creatorcontrib>Bullock, Caroline</creatorcontrib><creatorcontrib>McLellan, Michael</creatorcontrib><creatorcontrib>Schuierer, Sven</creatorcontrib><creatorcontrib>Murphy, Leo</creatorcontrib><creatorcontrib>Blommers, Marcel J J</creatorcontrib><creatorcontrib>Blaustein, Cecile</creatorcontrib><creatorcontrib>Berenshteyn, Frada</creatorcontrib><creatorcontrib>Lacoste, Arnaud</creatorcontrib><creatorcontrib>Thomas, Jason R</creatorcontrib><creatorcontrib>Roma, Guglielmo</creatorcontrib><creatorcontrib>Michaud, Gregory A</creatorcontrib><creatorcontrib>Tseng, Brian S</creatorcontrib><creatorcontrib>Porter, Jeffery A</creatorcontrib><creatorcontrib>Myer, Vic E</creatorcontrib><creatorcontrib>Tallarico, John A</creatorcontrib><creatorcontrib>Hamann, Lawrence G</creatorcontrib><creatorcontrib>Curtis, Daniel</creatorcontrib><creatorcontrib>Fishman, Mark C</creatorcontrib><creatorcontrib>Dietrich, William F</creatorcontrib><creatorcontrib>Dales, Natalie A</creatorcontrib><creatorcontrib>Sivasankaran, Rajeev</creatorcontrib><title>SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>A high-throughput screen identified a small molecule that promoted inclusion of SMN2 exon 7, increased SMN2 protein levels and extended survival in a SMA mouse model through stabilization of the interaction between SMN2 pre-mRNA and U1 snRNP complex.
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (
SMN1
) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (
SMN2
) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of
SMN2
splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the
SMN2
pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5′ splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule–mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.</description><subject>101/6</subject><subject>38/47</subject><subject>631/337/1645/1792</subject><subject>631/92/609</subject><subject>631/92/613</subject><subject>692/699/375</subject><subject>82/103</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Mortality</subject><subject>Muscular Atrophy, Spinal - drug therapy</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Muscular Atrophy, Spinal - mortality</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Neurological disorders</subject><subject>Protein Binding - drug effects</subject><subject>Protein Stability - drug effects</subject><subject>Proteolysis</subject><subject>Ribonucleoprotein, U1 Small Nuclear - agonists</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U1 Small Nuclear - metabolism</subject><subject>RNA Precursors - agonists</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Double-Stranded - agonists</subject><subject>RNA, Double-Stranded - chemistry</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Rodents</subject><subject>Small Molecule Libraries - chemical synthesis</subject><subject>Small Molecule Libraries - metabolism</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Survival of Motor Neuron 2 Protein - chemistry</subject><subject>Survival of Motor Neuron 2 Protein - genetics</subject><subject>Survival of Motor Neuron 2 Protein - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9LwzAUx4Mobk6PXqXgxUtn0jSv6XGIv2Cb4Oa5pE3qOtpkJu3Bm_-D_6F_iRn7gYjg4fEeyYfP4_FF6JzgIcGUX-tioZq8MkPCaXKA-oSxKIxjSA_3M8M9dOLcEmMKQPgx6kWAKU4i3kfj2WQaBW5VV4UKGiO7WrTGukDphdD-6YV8fXyurAqb5-koEM6ZohJtZXQgtAysckWngtlkFDRecIqOSlE7dbbtAzS_u53fPITjp_vHm9E4LGKgbRgxgnORFrFKc5pyKXNZ0jJNMBa0LAkumSQcFJMcIIkh4YIz8CVVzCTO6QBdbbQra9465dqsqVyh6lpoZTqXkSQBYJSz6H8UUhyRBOI1evkLXZrOan-HFwJEEAOnngo3VGGNc1aV2cpWjbDvGcHZOpBsF0i2DsTzF1trlzdK7uldAh4YbgDnv_Srsj_W_mn8BrtElms</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Palacino, James</creator><creator>Swalley, Susanne E</creator><creator>Song, Cheng</creator><creator>Cheung, Atwood K</creator><creator>Shu, Lei</creator><creator>Zhang, Xiaolu</creator><creator>Van Hoosear, Mailin</creator><creator>Shin, Youngah</creator><creator>Chin, Donovan N</creator><creator>Keller, Caroline Gubser</creator><creator>Beibel, Martin</creator><creator>Renaud, Nicole A</creator><creator>Smith, Thomas M</creator><creator>Salcius, Michael</creator><creator>Shi, Xiaoying</creator><creator>Hild, Marc</creator><creator>Servais, Rebecca</creator><creator>Jain, Monish</creator><creator>Deng, Lin</creator><creator>Bullock, Caroline</creator><creator>McLellan, Michael</creator><creator>Schuierer, Sven</creator><creator>Murphy, Leo</creator><creator>Blommers, Marcel J J</creator><creator>Blaustein, Cecile</creator><creator>Berenshteyn, Frada</creator><creator>Lacoste, Arnaud</creator><creator>Thomas, Jason R</creator><creator>Roma, Guglielmo</creator><creator>Michaud, Gregory A</creator><creator>Tseng, Brian S</creator><creator>Porter, Jeffery A</creator><creator>Myer, Vic E</creator><creator>Tallarico, John A</creator><creator>Hamann, Lawrence G</creator><creator>Curtis, Daniel</creator><creator>Fishman, Mark C</creator><creator>Dietrich, William F</creator><creator>Dales, Natalie A</creator><creator>Sivasankaran, Rajeev</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice</title><author>Palacino, James ; Swalley, Susanne E ; Song, Cheng ; Cheung, Atwood K ; Shu, Lei ; Zhang, Xiaolu ; Van Hoosear, Mailin ; Shin, Youngah ; Chin, Donovan N ; Keller, Caroline Gubser ; Beibel, Martin ; Renaud, Nicole A ; Smith, Thomas M ; Salcius, Michael ; Shi, Xiaoying ; Hild, Marc ; Servais, Rebecca ; Jain, Monish ; Deng, Lin ; Bullock, Caroline ; McLellan, Michael ; Schuierer, Sven ; Murphy, Leo ; Blommers, Marcel J J ; Blaustein, Cecile ; Berenshteyn, Frada ; Lacoste, Arnaud ; Thomas, Jason R ; Roma, Guglielmo ; Michaud, Gregory A ; Tseng, Brian S ; Porter, Jeffery A ; Myer, Vic E ; Tallarico, John A ; Hamann, Lawrence G ; Curtis, Daniel ; Fishman, Mark C ; Dietrich, William F ; Dales, Natalie A ; Sivasankaran, Rajeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-2510ba9c4e9b398ddbdf3f9700a3ff10f5d186e5d86674678a856a85de45d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/6</topic><topic>38/47</topic><topic>631/337/1645/1792</topic><topic>631/92/609</topic><topic>631/92/613</topic><topic>692/699/375</topic><topic>82/103</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Mortality</topic><topic>Muscular Atrophy, Spinal - drug therapy</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Muscular Atrophy, Spinal - mortality</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Neurological disorders</topic><topic>Protein Binding - drug effects</topic><topic>Protein Stability - drug effects</topic><topic>Proteolysis</topic><topic>Ribonucleoprotein, U1 Small Nuclear - agonists</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U1 Small Nuclear - metabolism</topic><topic>RNA Precursors - agonists</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Double-Stranded - agonists</topic><topic>RNA, Double-Stranded - chemistry</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Rodents</topic><topic>Small Molecule Libraries - chemical synthesis</topic><topic>Small Molecule Libraries - metabolism</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Survival of Motor Neuron 2 Protein - chemistry</topic><topic>Survival of Motor Neuron 2 Protein - genetics</topic><topic>Survival of Motor Neuron 2 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacino, James</creatorcontrib><creatorcontrib>Swalley, Susanne E</creatorcontrib><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Cheung, Atwood K</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Van Hoosear, Mailin</creatorcontrib><creatorcontrib>Shin, Youngah</creatorcontrib><creatorcontrib>Chin, Donovan N</creatorcontrib><creatorcontrib>Keller, Caroline Gubser</creatorcontrib><creatorcontrib>Beibel, Martin</creatorcontrib><creatorcontrib>Renaud, Nicole A</creatorcontrib><creatorcontrib>Smith, Thomas M</creatorcontrib><creatorcontrib>Salcius, Michael</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Hild, Marc</creatorcontrib><creatorcontrib>Servais, Rebecca</creatorcontrib><creatorcontrib>Jain, Monish</creatorcontrib><creatorcontrib>Deng, Lin</creatorcontrib><creatorcontrib>Bullock, Caroline</creatorcontrib><creatorcontrib>McLellan, Michael</creatorcontrib><creatorcontrib>Schuierer, Sven</creatorcontrib><creatorcontrib>Murphy, Leo</creatorcontrib><creatorcontrib>Blommers, Marcel J J</creatorcontrib><creatorcontrib>Blaustein, Cecile</creatorcontrib><creatorcontrib>Berenshteyn, Frada</creatorcontrib><creatorcontrib>Lacoste, Arnaud</creatorcontrib><creatorcontrib>Thomas, Jason R</creatorcontrib><creatorcontrib>Roma, Guglielmo</creatorcontrib><creatorcontrib>Michaud, Gregory A</creatorcontrib><creatorcontrib>Tseng, Brian S</creatorcontrib><creatorcontrib>Porter, Jeffery A</creatorcontrib><creatorcontrib>Myer, Vic E</creatorcontrib><creatorcontrib>Tallarico, John A</creatorcontrib><creatorcontrib>Hamann, Lawrence G</creatorcontrib><creatorcontrib>Curtis, Daniel</creatorcontrib><creatorcontrib>Fishman, Mark C</creatorcontrib><creatorcontrib>Dietrich, William F</creatorcontrib><creatorcontrib>Dales, Natalie A</creatorcontrib><creatorcontrib>Sivasankaran, Rajeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacino, James</au><au>Swalley, Susanne E</au><au>Song, Cheng</au><au>Cheung, Atwood K</au><au>Shu, Lei</au><au>Zhang, Xiaolu</au><au>Van Hoosear, Mailin</au><au>Shin, Youngah</au><au>Chin, Donovan N</au><au>Keller, Caroline Gubser</au><au>Beibel, Martin</au><au>Renaud, Nicole A</au><au>Smith, Thomas M</au><au>Salcius, Michael</au><au>Shi, Xiaoying</au><au>Hild, Marc</au><au>Servais, Rebecca</au><au>Jain, Monish</au><au>Deng, Lin</au><au>Bullock, Caroline</au><au>McLellan, Michael</au><au>Schuierer, Sven</au><au>Murphy, Leo</au><au>Blommers, Marcel J J</au><au>Blaustein, Cecile</au><au>Berenshteyn, Frada</au><au>Lacoste, Arnaud</au><au>Thomas, Jason R</au><au>Roma, Guglielmo</au><au>Michaud, Gregory A</au><au>Tseng, Brian S</au><au>Porter, Jeffery A</au><au>Myer, Vic E</au><au>Tallarico, John A</au><au>Hamann, Lawrence G</au><au>Curtis, Daniel</au><au>Fishman, Mark C</au><au>Dietrich, William F</au><au>Dales, Natalie A</au><au>Sivasankaran, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>11</volume><issue>7</issue><spage>511</spage><epage>517</epage><pages>511-517</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>A high-throughput screen identified a small molecule that promoted inclusion of SMN2 exon 7, increased SMN2 protein levels and extended survival in a SMA mouse model through stabilization of the interaction between SMN2 pre-mRNA and U1 snRNP complex.
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (
SMN1
) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (
SMN2
) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of
SMN2
splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the
SMN2
pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5′ splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule–mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26030728</pmid><doi>10.1038/nchembio.1837</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2015-07, Vol.11 (7), p.511-517 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776653852 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 101/6 38/47 631/337/1645/1792 631/92/609 631/92/613 692/699/375 82/103 Alternative Splicing Animals Binding Sites Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Chemistry Chemistry/Food Science Disease Models, Animal Female Gene Expression Humans Mice Mice, Transgenic Models, Molecular Molecular biology Mortality Muscular Atrophy, Spinal - drug therapy Muscular Atrophy, Spinal - metabolism Muscular Atrophy, Spinal - mortality Muscular Atrophy, Spinal - pathology Neurological disorders Protein Binding - drug effects Protein Stability - drug effects Proteolysis Ribonucleoprotein, U1 Small Nuclear - agonists Ribonucleoprotein, U1 Small Nuclear - chemistry Ribonucleoprotein, U1 Small Nuclear - metabolism RNA Precursors - agonists RNA Precursors - chemistry RNA Precursors - metabolism RNA, Double-Stranded - agonists RNA, Double-Stranded - chemistry RNA, Double-Stranded - metabolism Rodents Small Molecule Libraries - chemical synthesis Small Molecule Libraries - metabolism Small Molecule Libraries - pharmacology Survival Survival Analysis Survival of Motor Neuron 2 Protein - chemistry Survival of Motor Neuron 2 Protein - genetics Survival of Motor Neuron 2 Protein - metabolism |
title | SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T10%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMN2%20splice%20modulators%20enhance%20U1%E2%80%93pre-mRNA%20association%20and%20rescue%20SMA%20mice&rft.jtitle=Nature%20chemical%20biology&rft.au=Palacino,%20James&rft.date=2015-07-01&rft.volume=11&rft.issue=7&rft.spage=511&rft.epage=517&rft.pages=511-517&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.1837&rft_dat=%3Cproquest_cross%3E3957162881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766264683&rft_id=info:pmid/26030728&rfr_iscdi=true |