Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice
Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffei...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2014-04, Vol.59 (4), p.1366-1380 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1380 |
---|---|
container_issue | 4 |
container_start_page | 1366 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 59 |
creator | Sinha, Rohit A. Farah, Benjamin L. Singh, Brijesh K. Siddique, Monowarul M. Li, Ying Wu, Yajun Ilkayeva, Olga R. Gooding, Jessica Ching, Jianhong Zhou, Jin Martinez, Laura Xie, Sherwin Bay, Boon‐Huat Summers, Scott A. Newgard, Christopher B. Yen, Paul M. |
description | Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380) |
doi_str_mv | 10.1002/hep.26667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776651550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776651550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</originalsourceid><addsrcrecordid>eNqFkbtOxDAQRS0EguVR8APIEg0UAb9ixyVa8ZKQoICCKppkJ6yRswlxIpSOT-Ab-RIMCxRIiGqaM0d35hKyy9kRZ0wcz7E9Elprs0ImPBUmkTJlq2TChGGJ5dJukM0QHhljVolsnWwIaYXVxkzI_RSqCt0CaehdPXjoMdDog96V1LvWzWiNPRSNd6GmxUj7OVIY-qadw8P49vLqx9CEpgZP4878GUbqFrR2JW6TtQp8wJ2vuUXuzk5vpxfJ1fX55fTkKilVZkwCrELJLZRcybLSSttUZRxBGFXwwlgOMXQVD1Glrow2TKYCJQBwidlMZHKLHCy9bdc8DRj6vHahRO9hgc0Qcm6M1ilPU_Y_mnKmmFKMR3T_F_rYDN0iHhKpmMgawT-Eh0uq7JoQOqzytnM1dGPOWf5RTR5fmX9WE9m9L-NQ1Dj7Ib-7iMDxEnh2Hse_TfnF6c1S-Q6-7JfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509497210</pqid></control><display><type>article</type><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</creator><creatorcontrib>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</creatorcontrib><description>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.26667</identifier><identifier>PMID: 23929677</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Animals ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Caffeine - pharmacology ; Caffeine - therapeutic use ; Cell Line, Tumor ; Diet, High-Fat - adverse effects ; Down-Regulation - drug effects ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Fatty Liver - prevention & control ; Hep G2 Cells ; Hepatology ; Humans ; In Vitro Techniques ; Lipid Metabolism - drug effects ; Lipids ; Lipolysis - drug effects ; Lipolysis - physiology ; Liver - drug effects ; Liver - metabolism ; Liver diseases ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Lysosomes - drug effects ; Lysosomes - metabolism ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Oxidation-Reduction - drug effects ; Rodents ; Signal Transduction - drug effects ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Hepatology (Baltimore, Md.), 2014-04, Vol.59 (4), p.1366-1380</ispartof><rights>2014 by the American Association for the Study of Liver Diseases</rights><rights>2014 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</citedby><cites>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.26667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.26667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha, Rohit A.</creatorcontrib><creatorcontrib>Farah, Benjamin L.</creatorcontrib><creatorcontrib>Singh, Brijesh K.</creatorcontrib><creatorcontrib>Siddique, Monowarul M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Ilkayeva, Olga R.</creatorcontrib><creatorcontrib>Gooding, Jessica</creatorcontrib><creatorcontrib>Ching, Jianhong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Martinez, Laura</creatorcontrib><creatorcontrib>Xie, Sherwin</creatorcontrib><creatorcontrib>Bay, Boon‐Huat</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Yen, Paul M.</creatorcontrib><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Caffeine - pharmacology</subject><subject>Caffeine - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Down-Regulation - drug effects</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - prevention & control</subject><subject>Hep G2 Cells</subject><subject>Hepatology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Lipolysis - drug effects</subject><subject>Lipolysis - physiology</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOxDAQRS0EguVR8APIEg0UAb9ixyVa8ZKQoICCKppkJ6yRswlxIpSOT-Ab-RIMCxRIiGqaM0d35hKyy9kRZ0wcz7E9Elprs0ImPBUmkTJlq2TChGGJ5dJukM0QHhljVolsnWwIaYXVxkzI_RSqCt0CaehdPXjoMdDog96V1LvWzWiNPRSNd6GmxUj7OVIY-qadw8P49vLqx9CEpgZP4878GUbqFrR2JW6TtQp8wJ2vuUXuzk5vpxfJ1fX55fTkKilVZkwCrELJLZRcybLSSttUZRxBGFXwwlgOMXQVD1Glrow2TKYCJQBwidlMZHKLHCy9bdc8DRj6vHahRO9hgc0Qcm6M1ilPU_Y_mnKmmFKMR3T_F_rYDN0iHhKpmMgawT-Eh0uq7JoQOqzytnM1dGPOWf5RTR5fmX9WE9m9L-NQ1Dj7Ib-7iMDxEnh2Hse_TfnF6c1S-Q6-7JfI</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Sinha, Rohit A.</creator><creator>Farah, Benjamin L.</creator><creator>Singh, Brijesh K.</creator><creator>Siddique, Monowarul M.</creator><creator>Li, Ying</creator><creator>Wu, Yajun</creator><creator>Ilkayeva, Olga R.</creator><creator>Gooding, Jessica</creator><creator>Ching, Jianhong</creator><creator>Zhou, Jin</creator><creator>Martinez, Laura</creator><creator>Xie, Sherwin</creator><creator>Bay, Boon‐Huat</creator><creator>Summers, Scott A.</creator><creator>Newgard, Christopher B.</creator><creator>Yen, Paul M.</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><author>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Caffeine - pharmacology</topic><topic>Caffeine - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Down-Regulation - drug effects</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - prevention & control</topic><topic>Hep G2 Cells</topic><topic>Hepatology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Lipolysis - drug effects</topic><topic>Lipolysis - physiology</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Rohit A.</creatorcontrib><creatorcontrib>Farah, Benjamin L.</creatorcontrib><creatorcontrib>Singh, Brijesh K.</creatorcontrib><creatorcontrib>Siddique, Monowarul M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Ilkayeva, Olga R.</creatorcontrib><creatorcontrib>Gooding, Jessica</creatorcontrib><creatorcontrib>Ching, Jianhong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Martinez, Laura</creatorcontrib><creatorcontrib>Xie, Sherwin</creatorcontrib><creatorcontrib>Bay, Boon‐Huat</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Yen, Paul M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Rohit A.</au><au>Farah, Benjamin L.</au><au>Singh, Brijesh K.</au><au>Siddique, Monowarul M.</au><au>Li, Ying</au><au>Wu, Yajun</au><au>Ilkayeva, Olga R.</au><au>Gooding, Jessica</au><au>Ching, Jianhong</au><au>Zhou, Jin</au><au>Martinez, Laura</au><au>Xie, Sherwin</au><au>Bay, Boon‐Huat</au><au>Summers, Scott A.</au><au>Newgard, Christopher B.</au><au>Yen, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2014-04</date><risdate>2014</risdate><volume>59</volume><issue>4</issue><spage>1366</spage><epage>1380</epage><pages>1366-1380</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>23929677</pmid><doi>10.1002/hep.26667</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2014-04, Vol.59 (4), p.1366-1380 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776651550 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Autophagy Autophagy - drug effects Autophagy - physiology Caffeine - pharmacology Caffeine - therapeutic use Cell Line, Tumor Diet, High-Fat - adverse effects Down-Regulation - drug effects Fatty Liver - chemically induced Fatty Liver - metabolism Fatty Liver - prevention & control Hep G2 Cells Hepatology Humans In Vitro Techniques Lipid Metabolism - drug effects Lipids Lipolysis - drug effects Lipolysis - physiology Liver - drug effects Liver - metabolism Liver diseases Liver Neoplasms - metabolism Liver Neoplasms - pathology Lysosomes - drug effects Lysosomes - metabolism Male Metabolism Mice Mice, Inbred C57BL Models, Animal Oxidation-Reduction - drug effects Rodents Signal Transduction - drug effects Signal Transduction - physiology TOR Serine-Threonine Kinases - metabolism |
title | Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caffeine%20stimulates%20hepatic%20lipid%20metabolism%20by%20the%20autophagy%E2%80%90lysosomal%20pathway%20in%20mice&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Sinha,%20Rohit%20A.&rft.date=2014-04&rft.volume=59&rft.issue=4&rft.spage=1366&rft.epage=1380&rft.pages=1366-1380&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.26667&rft_dat=%3Cproquest_cross%3E1776651550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509497210&rft_id=info:pmid/23929677&rfr_iscdi=true |