Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice

Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2014-04, Vol.59 (4), p.1366-1380
Hauptverfasser: Sinha, Rohit A., Farah, Benjamin L., Singh, Brijesh K., Siddique, Monowarul M., Li, Ying, Wu, Yajun, Ilkayeva, Olga R., Gooding, Jessica, Ching, Jianhong, Zhou, Jin, Martinez, Laura, Xie, Sherwin, Bay, Boon‐Huat, Summers, Scott A., Newgard, Christopher B., Yen, Paul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 4
container_start_page 1366
container_title Hepatology (Baltimore, Md.)
container_volume 59
creator Sinha, Rohit A.
Farah, Benjamin L.
Singh, Brijesh K.
Siddique, Monowarul M.
Li, Ying
Wu, Yajun
Ilkayeva, Olga R.
Gooding, Jessica
Ching, Jianhong
Zhou, Jin
Martinez, Laura
Xie, Sherwin
Bay, Boon‐Huat
Summers, Scott A.
Newgard, Christopher B.
Yen, Paul M.
description Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)
doi_str_mv 10.1002/hep.26667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776651550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776651550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</originalsourceid><addsrcrecordid>eNqFkbtOxDAQRS0EguVR8APIEg0UAb9ixyVa8ZKQoICCKppkJ6yRswlxIpSOT-Ab-RIMCxRIiGqaM0d35hKyy9kRZ0wcz7E9Elprs0ImPBUmkTJlq2TChGGJ5dJukM0QHhljVolsnWwIaYXVxkzI_RSqCt0CaehdPXjoMdDog96V1LvWzWiNPRSNd6GmxUj7OVIY-qadw8P49vLqx9CEpgZP4878GUbqFrR2JW6TtQp8wJ2vuUXuzk5vpxfJ1fX55fTkKilVZkwCrELJLZRcybLSSttUZRxBGFXwwlgOMXQVD1Glrow2TKYCJQBwidlMZHKLHCy9bdc8DRj6vHahRO9hgc0Qcm6M1ilPU_Y_mnKmmFKMR3T_F_rYDN0iHhKpmMgawT-Eh0uq7JoQOqzytnM1dGPOWf5RTR5fmX9WE9m9L-NQ1Dj7Ib-7iMDxEnh2Hse_TfnF6c1S-Q6-7JfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509497210</pqid></control><display><type>article</type><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</creator><creatorcontrib>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</creatorcontrib><description>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.26667</identifier><identifier>PMID: 23929677</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Animals ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Caffeine - pharmacology ; Caffeine - therapeutic use ; Cell Line, Tumor ; Diet, High-Fat - adverse effects ; Down-Regulation - drug effects ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Fatty Liver - prevention &amp; control ; Hep G2 Cells ; Hepatology ; Humans ; In Vitro Techniques ; Lipid Metabolism - drug effects ; Lipids ; Lipolysis - drug effects ; Lipolysis - physiology ; Liver - drug effects ; Liver - metabolism ; Liver diseases ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Lysosomes - drug effects ; Lysosomes - metabolism ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Oxidation-Reduction - drug effects ; Rodents ; Signal Transduction - drug effects ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Hepatology (Baltimore, Md.), 2014-04, Vol.59 (4), p.1366-1380</ispartof><rights>2014 by the American Association for the Study of Liver Diseases</rights><rights>2014 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</citedby><cites>FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.26667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.26667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha, Rohit A.</creatorcontrib><creatorcontrib>Farah, Benjamin L.</creatorcontrib><creatorcontrib>Singh, Brijesh K.</creatorcontrib><creatorcontrib>Siddique, Monowarul M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Ilkayeva, Olga R.</creatorcontrib><creatorcontrib>Gooding, Jessica</creatorcontrib><creatorcontrib>Ching, Jianhong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Martinez, Laura</creatorcontrib><creatorcontrib>Xie, Sherwin</creatorcontrib><creatorcontrib>Bay, Boon‐Huat</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Yen, Paul M.</creatorcontrib><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Caffeine - pharmacology</subject><subject>Caffeine - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Down-Regulation - drug effects</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - prevention &amp; control</subject><subject>Hep G2 Cells</subject><subject>Hepatology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Lipolysis - drug effects</subject><subject>Lipolysis - physiology</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOxDAQRS0EguVR8APIEg0UAb9ixyVa8ZKQoICCKppkJ6yRswlxIpSOT-Ab-RIMCxRIiGqaM0d35hKyy9kRZ0wcz7E9Elprs0ImPBUmkTJlq2TChGGJ5dJukM0QHhljVolsnWwIaYXVxkzI_RSqCt0CaehdPXjoMdDog96V1LvWzWiNPRSNd6GmxUj7OVIY-qadw8P49vLqx9CEpgZP4878GUbqFrR2JW6TtQp8wJ2vuUXuzk5vpxfJ1fX55fTkKilVZkwCrELJLZRcybLSSttUZRxBGFXwwlgOMXQVD1Glrow2TKYCJQBwidlMZHKLHCy9bdc8DRj6vHahRO9hgc0Qcm6M1ilPU_Y_mnKmmFKMR3T_F_rYDN0iHhKpmMgawT-Eh0uq7JoQOqzytnM1dGPOWf5RTR5fmX9WE9m9L-NQ1Dj7Ib-7iMDxEnh2Hse_TfnF6c1S-Q6-7JfI</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Sinha, Rohit A.</creator><creator>Farah, Benjamin L.</creator><creator>Singh, Brijesh K.</creator><creator>Siddique, Monowarul M.</creator><creator>Li, Ying</creator><creator>Wu, Yajun</creator><creator>Ilkayeva, Olga R.</creator><creator>Gooding, Jessica</creator><creator>Ching, Jianhong</creator><creator>Zhou, Jin</creator><creator>Martinez, Laura</creator><creator>Xie, Sherwin</creator><creator>Bay, Boon‐Huat</creator><creator>Summers, Scott A.</creator><creator>Newgard, Christopher B.</creator><creator>Yen, Paul M.</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</title><author>Sinha, Rohit A. ; Farah, Benjamin L. ; Singh, Brijesh K. ; Siddique, Monowarul M. ; Li, Ying ; Wu, Yajun ; Ilkayeva, Olga R. ; Gooding, Jessica ; Ching, Jianhong ; Zhou, Jin ; Martinez, Laura ; Xie, Sherwin ; Bay, Boon‐Huat ; Summers, Scott A. ; Newgard, Christopher B. ; Yen, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4877-a0fe319ac143cf64695481ea274b1b791a094f2704c6f7670352e3aaa13e8d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Caffeine - pharmacology</topic><topic>Caffeine - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Down-Regulation - drug effects</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - prevention &amp; control</topic><topic>Hep G2 Cells</topic><topic>Hepatology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Lipolysis - drug effects</topic><topic>Lipolysis - physiology</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Rohit A.</creatorcontrib><creatorcontrib>Farah, Benjamin L.</creatorcontrib><creatorcontrib>Singh, Brijesh K.</creatorcontrib><creatorcontrib>Siddique, Monowarul M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Ilkayeva, Olga R.</creatorcontrib><creatorcontrib>Gooding, Jessica</creatorcontrib><creatorcontrib>Ching, Jianhong</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Martinez, Laura</creatorcontrib><creatorcontrib>Xie, Sherwin</creatorcontrib><creatorcontrib>Bay, Boon‐Huat</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Yen, Paul M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Rohit A.</au><au>Farah, Benjamin L.</au><au>Singh, Brijesh K.</au><au>Siddique, Monowarul M.</au><au>Li, Ying</au><au>Wu, Yajun</au><au>Ilkayeva, Olga R.</au><au>Gooding, Jessica</au><au>Ching, Jianhong</au><au>Zhou, Jin</au><au>Martinez, Laura</au><au>Xie, Sherwin</au><au>Bay, Boon‐Huat</au><au>Summers, Scott A.</au><au>Newgard, Christopher B.</au><au>Yen, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2014-04</date><risdate>2014</risdate><volume>59</volume><issue>4</issue><spage>1366</spage><epage>1380</epage><pages>1366-1380</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>23929677</pmid><doi>10.1002/hep.26667</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2014-04, Vol.59 (4), p.1366-1380
issn 0270-9139
1527-3350
language eng
recordid cdi_proquest_miscellaneous_1776651550
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Autophagy
Autophagy - drug effects
Autophagy - physiology
Caffeine - pharmacology
Caffeine - therapeutic use
Cell Line, Tumor
Diet, High-Fat - adverse effects
Down-Regulation - drug effects
Fatty Liver - chemically induced
Fatty Liver - metabolism
Fatty Liver - prevention & control
Hep G2 Cells
Hepatology
Humans
In Vitro Techniques
Lipid Metabolism - drug effects
Lipids
Lipolysis - drug effects
Lipolysis - physiology
Liver - drug effects
Liver - metabolism
Liver diseases
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Lysosomes - drug effects
Lysosomes - metabolism
Male
Metabolism
Mice
Mice, Inbred C57BL
Models, Animal
Oxidation-Reduction - drug effects
Rodents
Signal Transduction - drug effects
Signal Transduction - physiology
TOR Serine-Threonine Kinases - metabolism
title Caffeine stimulates hepatic lipid metabolism by the autophagy‐lysosomal pathway in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caffeine%20stimulates%20hepatic%20lipid%20metabolism%20by%20the%20autophagy%E2%80%90lysosomal%20pathway%20in%20mice&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Sinha,%20Rohit%20A.&rft.date=2014-04&rft.volume=59&rft.issue=4&rft.spage=1366&rft.epage=1380&rft.pages=1366-1380&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.26667&rft_dat=%3Cproquest_cross%3E1776651550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509497210&rft_id=info:pmid/23929677&rfr_iscdi=true