OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION
As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesti...
Gespeichert in:
Veröffentlicht in: | Natural resource modeling 2016-02, Vol.29 (1), p.36-70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Natural resource modeling |
container_volume | 29 |
creator | KELLY JR, MICHAEL R. XING, YULONG LENHART, SUZANNE |
description | As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesting strategies for maximizing yield of a fish population in a heterogeneous, finite domain. We determine whether these solutions include no‐take marine reserves as part of the optimal solution. The fishery stock is modeled using a nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion and advection, and with Robin boundary conditions. The objective for the problem is to find the harvest rate that maximizes the discounted yield. Optimal harvesting strategies are found numerically. |
doi_str_mv | 10.1111/nrm.12073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776645946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776645946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4013-b90201663ca4dbc862b7e8099fd3e1e1b90439e7ef13a930d5d342abcb513f713</originalsourceid><addsrcrecordid>eNp1kN9PwjAQxxujiYg--B8s8UUfBi3t1vVxwgZNxjbG0PjU7EdnQGC4QpT_3gLqg4l9ud7d53u5-wJwi2AH6dddN6sO6kGKz0ALMcxMSoh1DlrQYdB0LGpdgiulFhAiYjGrBV6jOOVjNzB8Ph0ZIzd58qYpD4eGHyWGa8RRPAvclEehMY4GXuANjMcXXQ-jMOCh5yZG7CbuYxTw_uGXcj1pwH3fS7zwmHiT2VF-DS6qbKnkzXdsg5nvpf2RGURD3ncDsyAQYTNnsAeRbeMiI2VeOHYvp9KBjFUllkgi3SeYSSorhDOGYWmVmPSyvMgthCuKcBvcn-Zumvp9J9VWrOaqkMtltpb1TglEqW3r04mt0bs_6KLeNWu9naZsSqmGiKYeTlTR1Eo1shKbZr7Kmr1AUBwsF9pycbRcs90T-zFfyv3_oAiT8Y_CPCnmais_fxVZ8yZsiqklnsOhwEmMBxM0Fhh_AQqPh1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767779464</pqid></control><display><type>article</type><title>OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>KELLY JR, MICHAEL R. ; XING, YULONG ; LENHART, SUZANNE</creator><creatorcontrib>KELLY JR, MICHAEL R. ; XING, YULONG ; LENHART, SUZANNE</creatorcontrib><description>As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesting strategies for maximizing yield of a fish population in a heterogeneous, finite domain. We determine whether these solutions include no‐take marine reserves as part of the optimal solution. The fishery stock is modeled using a nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion and advection, and with Robin boundary conditions. The objective for the problem is to find the harvest rate that maximizes the discounted yield. Optimal harvesting strategies are found numerically.</description><identifier>ISSN: 0890-8575</identifier><identifier>EISSN: 1939-7445</identifier><identifier>DOI: 10.1111/nrm.12073</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Fish ; fisheries ; harvesting ; Marine ; Marine conservation ; optimal control theory ; Partial differential equations</subject><ispartof>Natural resource modeling, 2016-02, Vol.29 (1), p.36-70</ispartof><rights>Copyright © 2015 Wiley Periodicals, Inc.</rights><rights>Copyright © 2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4013-b90201663ca4dbc862b7e8099fd3e1e1b90439e7ef13a930d5d342abcb513f713</citedby><cites>FETCH-LOGICAL-c4013-b90201663ca4dbc862b7e8099fd3e1e1b90439e7ef13a930d5d342abcb513f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnrm.12073$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnrm.12073$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>KELLY JR, MICHAEL R.</creatorcontrib><creatorcontrib>XING, YULONG</creatorcontrib><creatorcontrib>LENHART, SUZANNE</creatorcontrib><title>OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION</title><title>Natural resource modeling</title><addtitle>Natural Resource Modeling</addtitle><description>As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesting strategies for maximizing yield of a fish population in a heterogeneous, finite domain. We determine whether these solutions include no‐take marine reserves as part of the optimal solution. The fishery stock is modeled using a nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion and advection, and with Robin boundary conditions. The objective for the problem is to find the harvest rate that maximizes the discounted yield. Optimal harvesting strategies are found numerically.</description><subject>Fish</subject><subject>fisheries</subject><subject>harvesting</subject><subject>Marine</subject><subject>Marine conservation</subject><subject>optimal control theory</subject><subject>Partial differential equations</subject><issn>0890-8575</issn><issn>1939-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kN9PwjAQxxujiYg--B8s8UUfBi3t1vVxwgZNxjbG0PjU7EdnQGC4QpT_3gLqg4l9ud7d53u5-wJwi2AH6dddN6sO6kGKz0ALMcxMSoh1DlrQYdB0LGpdgiulFhAiYjGrBV6jOOVjNzB8Ph0ZIzd58qYpD4eGHyWGa8RRPAvclEehMY4GXuANjMcXXQ-jMOCh5yZG7CbuYxTw_uGXcj1pwH3fS7zwmHiT2VF-DS6qbKnkzXdsg5nvpf2RGURD3ncDsyAQYTNnsAeRbeMiI2VeOHYvp9KBjFUllkgi3SeYSSorhDOGYWmVmPSyvMgthCuKcBvcn-Zumvp9J9VWrOaqkMtltpb1TglEqW3r04mt0bs_6KLeNWu9naZsSqmGiKYeTlTR1Eo1shKbZr7Kmr1AUBwsF9pycbRcs90T-zFfyv3_oAiT8Y_CPCnmais_fxVZ8yZsiqklnsOhwEmMBxM0Fhh_AQqPh1A</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>KELLY JR, MICHAEL R.</creator><creator>XING, YULONG</creator><creator>LENHART, SUZANNE</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201602</creationdate><title>OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION</title><author>KELLY JR, MICHAEL R. ; XING, YULONG ; LENHART, SUZANNE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4013-b90201663ca4dbc862b7e8099fd3e1e1b90439e7ef13a930d5d342abcb513f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fish</topic><topic>fisheries</topic><topic>harvesting</topic><topic>Marine</topic><topic>Marine conservation</topic><topic>optimal control theory</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLY JR, MICHAEL R.</creatorcontrib><creatorcontrib>XING, YULONG</creatorcontrib><creatorcontrib>LENHART, SUZANNE</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Natural resource modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLY JR, MICHAEL R.</au><au>XING, YULONG</au><au>LENHART, SUZANNE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION</atitle><jtitle>Natural resource modeling</jtitle><addtitle>Natural Resource Modeling</addtitle><date>2016-02</date><risdate>2016</risdate><volume>29</volume><issue>1</issue><spage>36</spage><epage>70</epage><pages>36-70</pages><issn>0890-8575</issn><eissn>1939-7445</eissn><abstract>As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesting strategies for maximizing yield of a fish population in a heterogeneous, finite domain. We determine whether these solutions include no‐take marine reserves as part of the optimal solution. The fishery stock is modeled using a nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion and advection, and with Robin boundary conditions. The objective for the problem is to find the harvest rate that maximizes the discounted yield. Optimal harvesting strategies are found numerically.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/nrm.12073</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-8575 |
ispartof | Natural resource modeling, 2016-02, Vol.29 (1), p.36-70 |
issn | 0890-8575 1939-7445 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776645946 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Fish fisheries harvesting Marine Marine conservation optimal control theory Partial differential equations |
title | OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20FISH%20HARVESTING%20FOR%20A%20POPULATION%20MODELED%20BY%20A%20NONLINEAR%20PARABOLIC%20PARTIAL%20DIFFERENTIAL%20EQUATION&rft.jtitle=Natural%20resource%20modeling&rft.au=KELLY%20JR,%20MICHAEL%20R.&rft.date=2016-02&rft.volume=29&rft.issue=1&rft.spage=36&rft.epage=70&rft.pages=36-70&rft.issn=0890-8575&rft.eissn=1939-7445&rft_id=info:doi/10.1111/nrm.12073&rft_dat=%3Cproquest_cross%3E1776645946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767779464&rft_id=info:pmid/&rfr_iscdi=true |