Polynomial wavelets in hybrid-mixed stress finite element models

This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2010-10, Vol.26 (10), p.1293-1312
1. Verfasser: Castro, Luís Manuel Santos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 10
container_start_page 1293
container_title International journal for numerical methods in biomedical engineering
container_volume 26
creator Castro, Luís Manuel Santos
description This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cnm.1215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776644959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776644959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCo458CP0InjpTJomaW7q0CnOKUzUW8jSF4ym7Uw6t357OxzzJL7Le4cffx7_KDrGaIgRSs90VQ5xiule1EtRhhIuMr6_u4k4jAYhvKNuUiEEJ73o_LF2bVWXVrl4pb7AQRNiW8Vv7dzbIintGoo4NB5CiI2tbANxZ0qomrisC3DhKDowygUYbHc_ml1fPY1uksnD-HZ0MUk0EYImONc5ZrhgOdJcFCYnhhumKcIIsDZEGAGgjcAmp9CBFCuWK8UozEVuSD86_Uld-PpzCaGRpQ0anFMV1MsgMeeMZZmg4n-KCE4FzSn5pdrXIXgwcuFtqXzbIbkpVHaFyk2hHT3ZpqqglTNeVdqGnU9J2n2Ass4lP25lHbR_5snR9H6bu_U2NLDeeeU_JOOEU_kyHcvpbHrJnu9eJSbf15OSTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031295853</pqid></control><display><type>article</type><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Castro, Luís Manuel Santos</creator><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><description>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.1215</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation ; Boundaries ; Displacement ; elasticity ; Exact sciences and technology ; Finite element method ; finite elements ; Fundamental areas of phenomenology (including applications) ; hybrid-mixed formulations ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; polynomial wavelets ; Sciences and techniques of general use ; Solid mechanics ; Static elasticity (thermoelasticity...) ; stress models ; Stresses ; Structural and continuum mechanics ; Wavelet</subject><ispartof>International journal for numerical methods in biomedical engineering, 2010-10, Vol.26 (10), p.1293-1312</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</citedby><cites>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.1215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.1215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23277604$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Displacement</subject><subject>elasticity</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>hybrid-mixed formulations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>polynomial wavelets</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>stress models</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Wavelet</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AiCo458CP0InjpTJomaW7q0CnOKUzUW8jSF4ym7Uw6t357OxzzJL7Le4cffx7_KDrGaIgRSs90VQ5xiule1EtRhhIuMr6_u4k4jAYhvKNuUiEEJ73o_LF2bVWXVrl4pb7AQRNiW8Vv7dzbIintGoo4NB5CiI2tbANxZ0qomrisC3DhKDowygUYbHc_ml1fPY1uksnD-HZ0MUk0EYImONc5ZrhgOdJcFCYnhhumKcIIsDZEGAGgjcAmp9CBFCuWK8UozEVuSD86_Uld-PpzCaGRpQ0anFMV1MsgMeeMZZmg4n-KCE4FzSn5pdrXIXgwcuFtqXzbIbkpVHaFyk2hHT3ZpqqglTNeVdqGnU9J2n2Ass4lP25lHbR_5snR9H6bu_U2NLDeeeU_JOOEU_kyHcvpbHrJnu9eJSbf15OSTw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Castro, Luís Manuel Santos</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201010</creationdate><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><author>Castro, Luís Manuel Santos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Displacement</topic><topic>elasticity</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>hybrid-mixed formulations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>polynomial wavelets</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>stress models</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Luís Manuel Santos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial wavelets in hybrid-mixed stress finite element models</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2010-10</date><risdate>2010</risdate><volume>26</volume><issue>10</issue><spage>1293</spage><epage>1312</epage><pages>1293-1312</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cnm.1215</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2010-10, Vol.26 (10), p.1293-1312
issn 2040-7939
2040-7947
2040-7947
language eng
recordid cdi_proquest_miscellaneous_1776644959
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
Boundaries
Displacement
elasticity
Exact sciences and technology
Finite element method
finite elements
Fundamental areas of phenomenology (including applications)
hybrid-mixed formulations
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
polynomial wavelets
Sciences and techniques of general use
Solid mechanics
Static elasticity (thermoelasticity...)
stress models
Stresses
Structural and continuum mechanics
Wavelet
title Polynomial wavelets in hybrid-mixed stress finite element models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20wavelets%20in%20hybrid-mixed%20stress%20finite%20element%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Castro,%20Lu%C3%ADs%20Manuel%20Santos&rft.date=2010-10&rft.volume=26&rft.issue=10&rft.spage=1293&rft.epage=1312&rft.pages=1293-1312&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.1215&rft_dat=%3Cproquest_cross%3E1776644959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031295853&rft_id=info:pmid/&rfr_iscdi=true