Polynomial wavelets in hybrid-mixed stress finite element models
This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2010-10, Vol.26 (10), p.1293-1312 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1312 |
---|---|
container_issue | 10 |
container_start_page | 1293 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 26 |
creator | Castro, Luís Manuel Santos |
description | This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cnm.1215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776644959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776644959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCo458CP0InjpTJomaW7q0CnOKUzUW8jSF4ym7Uw6t357OxzzJL7Le4cffx7_KDrGaIgRSs90VQ5xiule1EtRhhIuMr6_u4k4jAYhvKNuUiEEJ73o_LF2bVWXVrl4pb7AQRNiW8Vv7dzbIintGoo4NB5CiI2tbANxZ0qomrisC3DhKDowygUYbHc_ml1fPY1uksnD-HZ0MUk0EYImONc5ZrhgOdJcFCYnhhumKcIIsDZEGAGgjcAmp9CBFCuWK8UozEVuSD86_Uld-PpzCaGRpQ0anFMV1MsgMeeMZZmg4n-KCE4FzSn5pdrXIXgwcuFtqXzbIbkpVHaFyk2hHT3ZpqqglTNeVdqGnU9J2n2Ass4lP25lHbR_5snR9H6bu_U2NLDeeeU_JOOEU_kyHcvpbHrJnu9eJSbf15OSTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031295853</pqid></control><display><type>article</type><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Castro, Luís Manuel Santos</creator><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><description>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.1215</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation ; Boundaries ; Displacement ; elasticity ; Exact sciences and technology ; Finite element method ; finite elements ; Fundamental areas of phenomenology (including applications) ; hybrid-mixed formulations ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; polynomial wavelets ; Sciences and techniques of general use ; Solid mechanics ; Static elasticity (thermoelasticity...) ; stress models ; Stresses ; Structural and continuum mechanics ; Wavelet</subject><ispartof>International journal for numerical methods in biomedical engineering, 2010-10, Vol.26 (10), p.1293-1312</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</citedby><cites>FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.1215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.1215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23277604$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Displacement</subject><subject>elasticity</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>hybrid-mixed formulations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>polynomial wavelets</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>stress models</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Wavelet</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AiCo458CP0InjpTJomaW7q0CnOKUzUW8jSF4ym7Uw6t357OxzzJL7Le4cffx7_KDrGaIgRSs90VQ5xiule1EtRhhIuMr6_u4k4jAYhvKNuUiEEJ73o_LF2bVWXVrl4pb7AQRNiW8Vv7dzbIintGoo4NB5CiI2tbANxZ0qomrisC3DhKDowygUYbHc_ml1fPY1uksnD-HZ0MUk0EYImONc5ZrhgOdJcFCYnhhumKcIIsDZEGAGgjcAmp9CBFCuWK8UozEVuSD86_Uld-PpzCaGRpQ0anFMV1MsgMeeMZZmg4n-KCE4FzSn5pdrXIXgwcuFtqXzbIbkpVHaFyk2hHT3ZpqqglTNeVdqGnU9J2n2Ass4lP25lHbR_5snR9H6bu_U2NLDeeeU_JOOEU_kyHcvpbHrJnu9eJSbf15OSTw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Castro, Luís Manuel Santos</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201010</creationdate><title>Polynomial wavelets in hybrid-mixed stress finite element models</title><author>Castro, Luís Manuel Santos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-18c8161d680c79df83f7f6c5010e1cf39f9eecf91f85e79d21a68aa65eb98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Displacement</topic><topic>elasticity</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>hybrid-mixed formulations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>polynomial wavelets</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>stress models</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Luís Manuel Santos</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Luís Manuel Santos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial wavelets in hybrid-mixed stress finite element models</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2010-10</date><risdate>2010</risdate><volume>26</volume><issue>10</issue><spage>1293</spage><epage>1312</epage><pages>1293-1312</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>This paper reports the use of polynomial wavelets as approximation functions in hybrid‐mixed stress finite element models applied to the solution of plane elasticity problems. The stress and displacement fields in the domain and the displacements on the static boundary are independently approximated. The kinematic boundary conditions are locally satisfied. All remaining equations are enforced in a weighted residual form so designed as to ensure that the discrete model embodies the relevant properties of continuum systems, namely the static‐kinematic duality and elastic reciprocity. A set of numerical applications is presented to illustrate the use of the hybrid‐mixed model and to assess its efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cnm.1215</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2010-10, Vol.26 (10), p.1293-1312 |
issn | 2040-7939 2040-7947 2040-7947 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776644959 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Boundaries Displacement elasticity Exact sciences and technology Finite element method finite elements Fundamental areas of phenomenology (including applications) hybrid-mixed formulations Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation Physics polynomial wavelets Sciences and techniques of general use Solid mechanics Static elasticity (thermoelasticity...) stress models Stresses Structural and continuum mechanics Wavelet |
title | Polynomial wavelets in hybrid-mixed stress finite element models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20wavelets%20in%20hybrid-mixed%20stress%20finite%20element%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Castro,%20Lu%C3%ADs%20Manuel%20Santos&rft.date=2010-10&rft.volume=26&rft.issue=10&rft.spage=1293&rft.epage=1312&rft.pages=1293-1312&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.1215&rft_dat=%3Cproquest_cross%3E1776644959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031295853&rft_id=info:pmid/&rfr_iscdi=true |