Quaternionic R transform and non-Hermitian random matrices
Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main objec...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-11, Vol.92 (5), p.052111-052111, Article 052111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 052111 |
---|---|
container_issue | 5 |
container_start_page | 052111 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | Burda, Zdzislaw Swiech, Artur |
description | Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating function for planar (noncrossing) cumulants. We demonstrate that the quaternionic R transform generates all connected averages of all distinct powers of X and its Hermitian conjugate X†: 〈〈1/NTrX(a)X(†b)X(c)...〉〉 for N→∞. We show that the R transform for Gaussian elliptic laws is given by a simple linear quaternionic map R(z+wj)=x+σ(2)(μe(2iϕ)z+wj) where (z,w) is the Cayley-Dickson pair of complex numbers forming a quaternion q=(z,w)≡z+wj. This map has five real parameters Rex, Imx, ϕ, σ, and μ. We use the R transform to calculate the limiting eigenvalue densities of several products of Gaussian random matrices. |
doi_str_mv | 10.1103/PhysRevE.92.052111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776085378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776085378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-cf3004b1e0e5aac521340abc57f38a372bbe57008a48bc97f05b3748433ee73c3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRbK3-AQ-So5fU2Z1sduNNpFqhoBY9L5vtBCPNpu4mQv-9KW2FgRmY9x6Pj7FrDlPOAe_evrZxSb-zaSGmIAXn_ISNuZSQClT56e7GIkUl5YhdxPgNgAJ1ds5GIs8lH2bM7t9721HwdetrlyyTLlgfqzY0ifWrxLc-nVNo6q62Phleq7ZJGtuF2lG8ZGeVXUe6OuwJ-3yafTzO08Xr88vjwyJ1CNilrkKArOQEJK11Q0_MwJZOqgq1RSXKkqQC0DbTpStUBbJElekMkUihwwm73eduQvvTU-xMU0dH67X11PbRcKVy0BKVHqRiL3WhjTFQZTahbmzYGg5mx8wcmZlCmD2zwXRzyO_Lhlb_liMk_AMQm2i6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776085378</pqid></control><display><type>article</type><title>Quaternionic R transform and non-Hermitian random matrices</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Burda, Zdzislaw ; Swiech, Artur</creator><creatorcontrib>Burda, Zdzislaw ; Swiech, Artur</creatorcontrib><description>Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating function for planar (noncrossing) cumulants. We demonstrate that the quaternionic R transform generates all connected averages of all distinct powers of X and its Hermitian conjugate X†: 〈〈1/NTrX(a)X(†b)X(c)...〉〉 for N→∞. We show that the R transform for Gaussian elliptic laws is given by a simple linear quaternionic map R(z+wj)=x+σ(2)(μe(2iϕ)z+wj) where (z,w) is the Cayley-Dickson pair of complex numbers forming a quaternion q=(z,w)≡z+wj. This map has five real parameters Rex, Imx, ϕ, σ, and μ. We use the R transform to calculate the limiting eigenvalue densities of several products of Gaussian random matrices.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.052111</identifier><identifier>PMID: 26651651</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-11, Vol.92 (5), p.052111-052111, Article 052111</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-cf3004b1e0e5aac521340abc57f38a372bbe57008a48bc97f05b3748433ee73c3</citedby><cites>FETCH-LOGICAL-c303t-cf3004b1e0e5aac521340abc57f38a372bbe57008a48bc97f05b3748433ee73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26651651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burda, Zdzislaw</creatorcontrib><creatorcontrib>Swiech, Artur</creatorcontrib><title>Quaternionic R transform and non-Hermitian random matrices</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating function for planar (noncrossing) cumulants. We demonstrate that the quaternionic R transform generates all connected averages of all distinct powers of X and its Hermitian conjugate X†: 〈〈1/NTrX(a)X(†b)X(c)...〉〉 for N→∞. We show that the R transform for Gaussian elliptic laws is given by a simple linear quaternionic map R(z+wj)=x+σ(2)(μe(2iϕ)z+wj) where (z,w) is the Cayley-Dickson pair of complex numbers forming a quaternion q=(z,w)≡z+wj. This map has five real parameters Rex, Imx, ϕ, σ, and μ. We use the R transform to calculate the limiting eigenvalue densities of several products of Gaussian random matrices.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRbK3-AQ-So5fU2Z1sduNNpFqhoBY9L5vtBCPNpu4mQv-9KW2FgRmY9x6Pj7FrDlPOAe_evrZxSb-zaSGmIAXn_ISNuZSQClT56e7GIkUl5YhdxPgNgAJ1ds5GIs8lH2bM7t9721HwdetrlyyTLlgfqzY0ifWrxLc-nVNo6q62Phleq7ZJGtuF2lG8ZGeVXUe6OuwJ-3yafTzO08Xr88vjwyJ1CNilrkKArOQEJK11Q0_MwJZOqgq1RSXKkqQC0DbTpStUBbJElekMkUihwwm73eduQvvTU-xMU0dH67X11PbRcKVy0BKVHqRiL3WhjTFQZTahbmzYGg5mx8wcmZlCmD2zwXRzyO_Lhlb_liMk_AMQm2i6</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Burda, Zdzislaw</creator><creator>Swiech, Artur</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Quaternionic R transform and non-Hermitian random matrices</title><author>Burda, Zdzislaw ; Swiech, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-cf3004b1e0e5aac521340abc57f38a372bbe57008a48bc97f05b3748433ee73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Burda, Zdzislaw</creatorcontrib><creatorcontrib>Swiech, Artur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burda, Zdzislaw</au><au>Swiech, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quaternionic R transform and non-Hermitian random matrices</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-11</date><risdate>2015</risdate><volume>92</volume><issue>5</issue><spage>052111</spage><epage>052111</epage><pages>052111-052111</pages><artnum>052111</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating function for planar (noncrossing) cumulants. We demonstrate that the quaternionic R transform generates all connected averages of all distinct powers of X and its Hermitian conjugate X†: 〈〈1/NTrX(a)X(†b)X(c)...〉〉 for N→∞. We show that the R transform for Gaussian elliptic laws is given by a simple linear quaternionic map R(z+wj)=x+σ(2)(μe(2iϕ)z+wj) where (z,w) is the Cayley-Dickson pair of complex numbers forming a quaternion q=(z,w)≡z+wj. This map has five real parameters Rex, Imx, ϕ, σ, and μ. We use the R transform to calculate the limiting eigenvalue densities of several products of Gaussian random matrices.</abstract><cop>United States</cop><pmid>26651651</pmid><doi>10.1103/PhysRevE.92.052111</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-11, Vol.92 (5), p.052111-052111, Article 052111 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1776085378 |
source | APS: American Physical Society E-Journals (Physics) |
title | Quaternionic R transform and non-Hermitian random matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quaternionic%20R%20transform%20and%20non-Hermitian%20random%20matrices&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Burda,%20Zdzislaw&rft.date=2015-11&rft.volume=92&rft.issue=5&rft.spage=052111&rft.epage=052111&rft.pages=052111-052111&rft.artnum=052111&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.052111&rft_dat=%3Cproquest_cross%3E1776085378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776085378&rft_id=info:pmid/26651651&rfr_iscdi=true |