Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila
Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Si...
Gespeichert in:
Veröffentlicht in: | Current biology 2016-03, Vol.26 (6), p.814-820 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 6 |
container_start_page | 814 |
container_title | Current biology |
container_volume | 26 |
creator | Min, Soohong Chae, Hyo-Seok Jang, Yong-Hoon Choi, Sekyu Lee, Sion Jeong, Yong Taek Jones, Walton D. Moon, Seok Jun Kim, Young-Joon Chung, Jongkyeong |
description | Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.
[Display omitted]
•Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food
Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically. |
doi_str_mv | 10.1016/j.cub.2016.01.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1775635175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982216000798</els_id><sourcerecordid>1775635175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4ADbISzYJdurEsVih8pSQQDzWlu2MwVUaB9sF9e9xVWDJamZx7tXMQeiYkpIS2pzNS7PUZZXXktCSVGILTWjLRUEYq7fRhIiGFKKtqj20H-OcEFq1otlFe1UjWNvy6QQ933UwJGedUcn5AXuLFX6EMbkOwpsz-FGl9y-1wrPgUoZ6nDx-ziykFX6COPohQsRuwJfBRz--u14doh2r-ghHP_MAvV5fvcxui_uHm7vZxX1hWFOlQnMLzHZaa9FpYVWloGbAWasEBWpFw5lQVihoOVhjqOYMNBGdsVAL28L0AJ1uesfgP5YQk1y4aKDv1QB-GSXlvG6mNeV1RukGNfnKGMDKMbiFCitJiVy7lHOZXcq1S0mozC5z5uSnfqkX0P0lfuVl4HwDQH7y00GQ0TgYDHQugEmy8-6f-m-Z7Ybi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775635175</pqid></control><display><type>article</type><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</creator><creatorcontrib>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</creatorcontrib><description>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.
[Display omitted]
•Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food
Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2016.01.029</identifier><identifier>PMID: 26948873</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Body Weight ; Brain - physiology ; Drosophila - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Eating ; Feeding Behavior ; Female ; Gene Expression Regulation ; Male ; Neurons - metabolism ; Peptides - metabolism ; Receptors, Peptide ; Satiety Response - physiology ; TRPA1 Cation Channel ; TRPC Cation Channels - metabolism</subject><ispartof>Current biology, 2016-03, Vol.26 (6), p.814-820</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</citedby><cites>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982216000798$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26948873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Chae, Hyo-Seok</creatorcontrib><creatorcontrib>Jang, Yong-Hoon</creatorcontrib><creatorcontrib>Choi, Sekyu</creatorcontrib><creatorcontrib>Lee, Sion</creatorcontrib><creatorcontrib>Jeong, Yong Taek</creatorcontrib><creatorcontrib>Jones, Walton D.</creatorcontrib><creatorcontrib>Moon, Seok Jun</creatorcontrib><creatorcontrib>Kim, Young-Joon</creatorcontrib><creatorcontrib>Chung, Jongkyeong</creatorcontrib><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.
[Display omitted]
•Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food
Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Body Weight</subject><subject>Brain - physiology</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eating</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Male</subject><subject>Neurons - metabolism</subject><subject>Peptides - metabolism</subject><subject>Receptors, Peptide</subject><subject>Satiety Response - physiology</subject><subject>TRPA1 Cation Channel</subject><subject>TRPC Cation Channels - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EgvL4ADbISzYJdurEsVih8pSQQDzWlu2MwVUaB9sF9e9xVWDJamZx7tXMQeiYkpIS2pzNS7PUZZXXktCSVGILTWjLRUEYq7fRhIiGFKKtqj20H-OcEFq1otlFe1UjWNvy6QQ933UwJGedUcn5AXuLFX6EMbkOwpsz-FGl9y-1wrPgUoZ6nDx-ziykFX6COPohQsRuwJfBRz--u14doh2r-ghHP_MAvV5fvcxui_uHm7vZxX1hWFOlQnMLzHZaa9FpYVWloGbAWasEBWpFw5lQVihoOVhjqOYMNBGdsVAL28L0AJ1uesfgP5YQk1y4aKDv1QB-GSXlvG6mNeV1RukGNfnKGMDKMbiFCitJiVy7lHOZXcq1S0mozC5z5uSnfqkX0P0lfuVl4HwDQH7y00GQ0TgYDHQugEmy8-6f-m-Z7Ybi</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Min, Soohong</creator><creator>Chae, Hyo-Seok</creator><creator>Jang, Yong-Hoon</creator><creator>Choi, Sekyu</creator><creator>Lee, Sion</creator><creator>Jeong, Yong Taek</creator><creator>Jones, Walton D.</creator><creator>Moon, Seok Jun</creator><creator>Kim, Young-Joon</creator><creator>Chung, Jongkyeong</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160321</creationdate><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><author>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Body Weight</topic><topic>Brain - physiology</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eating</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Male</topic><topic>Neurons - metabolism</topic><topic>Peptides - metabolism</topic><topic>Receptors, Peptide</topic><topic>Satiety Response - physiology</topic><topic>TRPA1 Cation Channel</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Chae, Hyo-Seok</creatorcontrib><creatorcontrib>Jang, Yong-Hoon</creatorcontrib><creatorcontrib>Choi, Sekyu</creatorcontrib><creatorcontrib>Lee, Sion</creatorcontrib><creatorcontrib>Jeong, Yong Taek</creatorcontrib><creatorcontrib>Jones, Walton D.</creatorcontrib><creatorcontrib>Moon, Seok Jun</creatorcontrib><creatorcontrib>Kim, Young-Joon</creatorcontrib><creatorcontrib>Chung, Jongkyeong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Soohong</au><au>Chae, Hyo-Seok</au><au>Jang, Yong-Hoon</au><au>Choi, Sekyu</au><au>Lee, Sion</au><au>Jeong, Yong Taek</au><au>Jones, Walton D.</au><au>Moon, Seok Jun</au><au>Kim, Young-Joon</au><au>Chung, Jongkyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2016-03-21</date><risdate>2016</risdate><volume>26</volume><issue>6</issue><spage>814</spage><epage>820</epage><pages>814-820</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.
[Display omitted]
•Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food
Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26948873</pmid><doi>10.1016/j.cub.2016.01.029</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2016-03, Vol.26 (6), p.814-820 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_1775635175 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Animals, Genetically Modified Body Weight Brain - physiology Drosophila - physiology Drosophila Proteins - genetics Drosophila Proteins - metabolism Eating Feeding Behavior Female Gene Expression Regulation Male Neurons - metabolism Peptides - metabolism Receptors, Peptide Satiety Response - physiology TRPA1 Cation Channel TRPC Cation Channels - metabolism |
title | Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Peptidergic%20Pathway%20Critical%20to%20Satiety%20Responses%20in%20Drosophila&rft.jtitle=Current%20biology&rft.au=Min,%20Soohong&rft.date=2016-03-21&rft.volume=26&rft.issue=6&rft.spage=814&rft.epage=820&rft.pages=814-820&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2016.01.029&rft_dat=%3Cproquest_cross%3E1775635175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775635175&rft_id=info:pmid/26948873&rft_els_id=S0960982216000798&rfr_iscdi=true |