Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila

Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2016-03, Vol.26 (6), p.814-820
Hauptverfasser: Min, Soohong, Chae, Hyo-Seok, Jang, Yong-Hoon, Choi, Sekyu, Lee, Sion, Jeong, Yong Taek, Jones, Walton D., Moon, Seok Jun, Kim, Young-Joon, Chung, Jongkyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 6
container_start_page 814
container_title Current biology
container_volume 26
creator Min, Soohong
Chae, Hyo-Seok
Jang, Yong-Hoon
Choi, Sekyu
Lee, Sion
Jeong, Yong Taek
Jones, Walton D.
Moon, Seok Jun
Kim, Young-Joon
Chung, Jongkyeong
description Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW. [Display omitted] •Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.
doi_str_mv 10.1016/j.cub.2016.01.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1775635175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982216000798</els_id><sourcerecordid>1775635175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4ADbISzYJdurEsVih8pSQQDzWlu2MwVUaB9sF9e9xVWDJamZx7tXMQeiYkpIS2pzNS7PUZZXXktCSVGILTWjLRUEYq7fRhIiGFKKtqj20H-OcEFq1otlFe1UjWNvy6QQ933UwJGedUcn5AXuLFX6EMbkOwpsz-FGl9y-1wrPgUoZ6nDx-ziykFX6COPohQsRuwJfBRz--u14doh2r-ghHP_MAvV5fvcxui_uHm7vZxX1hWFOlQnMLzHZaa9FpYVWloGbAWasEBWpFw5lQVihoOVhjqOYMNBGdsVAL28L0AJ1uesfgP5YQk1y4aKDv1QB-GSXlvG6mNeV1RukGNfnKGMDKMbiFCitJiVy7lHOZXcq1S0mozC5z5uSnfqkX0P0lfuVl4HwDQH7y00GQ0TgYDHQugEmy8-6f-m-Z7Ybi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775635175</pqid></control><display><type>article</type><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</creator><creatorcontrib>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</creatorcontrib><description>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW. [Display omitted] •Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2016.01.029</identifier><identifier>PMID: 26948873</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Body Weight ; Brain - physiology ; Drosophila - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Eating ; Feeding Behavior ; Female ; Gene Expression Regulation ; Male ; Neurons - metabolism ; Peptides - metabolism ; Receptors, Peptide ; Satiety Response - physiology ; TRPA1 Cation Channel ; TRPC Cation Channels - metabolism</subject><ispartof>Current biology, 2016-03, Vol.26 (6), p.814-820</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</citedby><cites>FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982216000798$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26948873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Chae, Hyo-Seok</creatorcontrib><creatorcontrib>Jang, Yong-Hoon</creatorcontrib><creatorcontrib>Choi, Sekyu</creatorcontrib><creatorcontrib>Lee, Sion</creatorcontrib><creatorcontrib>Jeong, Yong Taek</creatorcontrib><creatorcontrib>Jones, Walton D.</creatorcontrib><creatorcontrib>Moon, Seok Jun</creatorcontrib><creatorcontrib>Kim, Young-Joon</creatorcontrib><creatorcontrib>Chung, Jongkyeong</creatorcontrib><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW. [Display omitted] •Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Body Weight</subject><subject>Brain - physiology</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eating</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Male</subject><subject>Neurons - metabolism</subject><subject>Peptides - metabolism</subject><subject>Receptors, Peptide</subject><subject>Satiety Response - physiology</subject><subject>TRPA1 Cation Channel</subject><subject>TRPC Cation Channels - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EgvL4ADbISzYJdurEsVih8pSQQDzWlu2MwVUaB9sF9e9xVWDJamZx7tXMQeiYkpIS2pzNS7PUZZXXktCSVGILTWjLRUEYq7fRhIiGFKKtqj20H-OcEFq1otlFe1UjWNvy6QQ933UwJGedUcn5AXuLFX6EMbkOwpsz-FGl9y-1wrPgUoZ6nDx-ziykFX6COPohQsRuwJfBRz--u14doh2r-ghHP_MAvV5fvcxui_uHm7vZxX1hWFOlQnMLzHZaa9FpYVWloGbAWasEBWpFw5lQVihoOVhjqOYMNBGdsVAL28L0AJ1uesfgP5YQk1y4aKDv1QB-GSXlvG6mNeV1RukGNfnKGMDKMbiFCitJiVy7lHOZXcq1S0mozC5z5uSnfqkX0P0lfuVl4HwDQH7y00GQ0TgYDHQugEmy8-6f-m-Z7Ybi</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Min, Soohong</creator><creator>Chae, Hyo-Seok</creator><creator>Jang, Yong-Hoon</creator><creator>Choi, Sekyu</creator><creator>Lee, Sion</creator><creator>Jeong, Yong Taek</creator><creator>Jones, Walton D.</creator><creator>Moon, Seok Jun</creator><creator>Kim, Young-Joon</creator><creator>Chung, Jongkyeong</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160321</creationdate><title>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</title><author>Min, Soohong ; Chae, Hyo-Seok ; Jang, Yong-Hoon ; Choi, Sekyu ; Lee, Sion ; Jeong, Yong Taek ; Jones, Walton D. ; Moon, Seok Jun ; Kim, Young-Joon ; Chung, Jongkyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b7fe4fdbbb9db9fa2ae54e748a91e1f96749af9ae87efcc1b74eb09dcfe59f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Body Weight</topic><topic>Brain - physiology</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eating</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Male</topic><topic>Neurons - metabolism</topic><topic>Peptides - metabolism</topic><topic>Receptors, Peptide</topic><topic>Satiety Response - physiology</topic><topic>TRPA1 Cation Channel</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Chae, Hyo-Seok</creatorcontrib><creatorcontrib>Jang, Yong-Hoon</creatorcontrib><creatorcontrib>Choi, Sekyu</creatorcontrib><creatorcontrib>Lee, Sion</creatorcontrib><creatorcontrib>Jeong, Yong Taek</creatorcontrib><creatorcontrib>Jones, Walton D.</creatorcontrib><creatorcontrib>Moon, Seok Jun</creatorcontrib><creatorcontrib>Kim, Young-Joon</creatorcontrib><creatorcontrib>Chung, Jongkyeong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Soohong</au><au>Chae, Hyo-Seok</au><au>Jang, Yong-Hoon</au><au>Choi, Sekyu</au><au>Lee, Sion</au><au>Jeong, Yong Taek</au><au>Jones, Walton D.</au><au>Moon, Seok Jun</au><au>Kim, Young-Joon</au><au>Chung, Jongkyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2016-03-21</date><risdate>2016</risdate><volume>26</volume><issue>6</issue><spage>814</spage><epage>820</epage><pages>814-820</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Although several neural pathways have been implicated in feeding behaviors in mammals [1–7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW. [Display omitted] •Activity of myoinhibitory peptide (MIP) neurons is tightly linked to body weight•MIP encodes anorexigenic brain signaling that determines body weight•MIP produces satiety responses independently of sex peptide receptor•MIP modulates behavioral responses to olfactory and gustatory cues of food Min et al. uncover that myoinhibitory peptide and myoinhibitory peptide neurons in the brain are important for shaping feeding motivations and maintaining body weight in Drosophila. Like the pro-opiomelanocortin pathway in mammals, silencing myoinhibitory peptide neurons increases feeding activity and body weight drastically.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26948873</pmid><doi>10.1016/j.cub.2016.01.029</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2016-03, Vol.26 (6), p.814-820
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_1775635175
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Genetically Modified
Body Weight
Brain - physiology
Drosophila - physiology
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Eating
Feeding Behavior
Female
Gene Expression Regulation
Male
Neurons - metabolism
Peptides - metabolism
Receptors, Peptide
Satiety Response - physiology
TRPA1 Cation Channel
TRPC Cation Channels - metabolism
title Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Peptidergic%20Pathway%20Critical%20to%20Satiety%20Responses%20in%20Drosophila&rft.jtitle=Current%20biology&rft.au=Min,%20Soohong&rft.date=2016-03-21&rft.volume=26&rft.issue=6&rft.spage=814&rft.epage=820&rft.pages=814-820&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2016.01.029&rft_dat=%3Cproquest_cross%3E1775635175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775635175&rft_id=info:pmid/26948873&rft_els_id=S0960982216000798&rfr_iscdi=true