Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations

Measurements of changes in surface height carried out with sonic altimeters mounted on automatic weather stations in Dronning Maud Land (DML) and on Berkner Island, Antarctica, are used to derive the surface mass balance. The surface mass balance is positive at all sites, i.e. accumulation outweighs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of glaciology 2003-01, Vol.49 (167), p.512-520
Hauptverfasser: Reijmer, Carleen H., Broeke, Michiel R. van den
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurements of changes in surface height carried out with sonic altimeters mounted on automatic weather stations in Dronning Maud Land (DML) and on Berkner Island, Antarctica, are used to derive the surface mass balance. The surface mass balance is positive at all sites, i.e. accumulation outweighs ablation. The spatial and temporal variability in accumulation is high. Accumulation occurs in numerous small events and a few large events per year. The larger events contribute more to the annual accumulation than the small events; ∼50% of all accumulation is contributed by 10–25% of all events. The accumulation generally decreases with increasing distance from the coast and elevation. Annual averaged values range from ∼375 ± 59 mm w.e. a−1 near the coast to ∼33 ± 25 mm w.e. a−1 on theAntarctic plateau and are in good agreement with long-term averaged annual accumulation rates obtained from snow pits and firn cores. The records show seasonal dependency of the amount of accumulation, with a maximum in winter in the coastal and escarpment region of DML and in summer on Berkner Island and on the plateau. The seasonal cycles are significant on Berkner Island, and in the coastal area and part of the escarpment region.
ISSN:0022-1430
1727-5652
DOI:10.3189/172756503781830494