Low-cost, real-time, continuous flow PCR system for pathogen detection

In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2016-04, Vol.18 (2), p.34-34, Article 34
Hauptverfasser: Fernández-Carballo, B. Leticia, McGuiness, Ian, McBeth, Christine, Kalashnikov, Maxim, Borrós, Salvador, Sharon, Andre, Sauer-Budge, Alexis F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 2
container_start_page 34
container_title Biomedical microdevices
container_volume 18
creator Fernández-Carballo, B. Leticia
McGuiness, Ian
McBeth, Christine
Kalashnikov, Maxim
Borrós, Salvador
Sharon, Andre
Sauer-Budge, Alexis F.
description In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.
doi_str_mv 10.1007/s10544-016-0060-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1775379831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3997503101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-fcbcd8a9c14361f5b902b24f9803dec8d156c878d49b56cd9325850d30f44d973</originalsourceid><addsrcrecordid>eNp1kE1L5TAUhsPgMH7M_AA3UnDjwuhJ872Ui47CBQfRdWiTVCttc01SLv5741wVEVzlQJ7znpcHoX0CJwRAniYCnDEMRGAAAZj9QDuEyxorqchWmamSuCZSbKPdlB4BiBZC_ELbtdCag-I76GIZ1tiGlI-r6JsB5370x5UNU-6nOcyp6oawrv4tbqr0nLIfqy7EatXkh3Dvp8r57G3uw_Qb_eyaIfk_b-8eurs4v11c4uX136vF2RJbKuuMO9tapxptCaOCdLzVULc167QC6rxVjnBhS3nHdFsmp2nNFQdHoWPMaUn30NEmdxXD0-xTNmOfrB-GZvKlrSFSciq1oqSgh1_QxzDHqbT7T0kCTKpCkQ1lY0gp-s6sYj828dkQMK-SzUayKZLNq2TDys7BW_Lcjt59bLxbLUC9AVL5mu59_HT629QXvOaFag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775710478</pqid></control><display><type>article</type><title>Low-cost, real-time, continuous flow PCR system for pathogen detection</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fernández-Carballo, B. Leticia ; McGuiness, Ian ; McBeth, Christine ; Kalashnikov, Maxim ; Borrós, Salvador ; Sharon, Andre ; Sauer-Budge, Alexis F.</creator><creatorcontrib>Fernández-Carballo, B. Leticia ; McGuiness, Ian ; McBeth, Christine ; Kalashnikov, Maxim ; Borrós, Salvador ; Sharon, Andre ; Sauer-Budge, Alexis F.</creatorcontrib><description>In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-016-0060-4</identifier><identifier>PMID: 26995085</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biophysics ; Chlamydia trachomatis - genetics ; Chlamydia trachomatis - isolation &amp; purification ; Costs and Cost Analysis ; Diagnostic tests ; Engineering ; Engineering Fluid Dynamics ; Equipment Design ; Escherichia coli O157 - genetics ; Escherichia coli O157 - isolation &amp; purification ; Microchip Analytical Procedures ; Nanotechnology ; Pathogens ; Point-of-Care Systems ; Real-Time Polymerase Chain Reaction - economics ; Real-Time Polymerase Chain Reaction - instrumentation ; Semiconductors</subject><ispartof>Biomedical microdevices, 2016-04, Vol.18 (2), p.34-34, Article 34</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-fcbcd8a9c14361f5b902b24f9803dec8d156c878d49b56cd9325850d30f44d973</citedby><cites>FETCH-LOGICAL-c372t-fcbcd8a9c14361f5b902b24f9803dec8d156c878d49b56cd9325850d30f44d973</cites><orcidid>0000-0001-5961-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-016-0060-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-016-0060-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26995085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Carballo, B. Leticia</creatorcontrib><creatorcontrib>McGuiness, Ian</creatorcontrib><creatorcontrib>McBeth, Christine</creatorcontrib><creatorcontrib>Kalashnikov, Maxim</creatorcontrib><creatorcontrib>Borrós, Salvador</creatorcontrib><creatorcontrib>Sharon, Andre</creatorcontrib><creatorcontrib>Sauer-Budge, Alexis F.</creatorcontrib><title>Low-cost, real-time, continuous flow PCR system for pathogen detection</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.</description><subject>Biological and Medical Physics</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Chlamydia trachomatis - genetics</subject><subject>Chlamydia trachomatis - isolation &amp; purification</subject><subject>Costs and Cost Analysis</subject><subject>Diagnostic tests</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Equipment Design</subject><subject>Escherichia coli O157 - genetics</subject><subject>Escherichia coli O157 - isolation &amp; purification</subject><subject>Microchip Analytical Procedures</subject><subject>Nanotechnology</subject><subject>Pathogens</subject><subject>Point-of-Care Systems</subject><subject>Real-Time Polymerase Chain Reaction - economics</subject><subject>Real-Time Polymerase Chain Reaction - instrumentation</subject><subject>Semiconductors</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1L5TAUhsPgMH7M_AA3UnDjwuhJ872Ui47CBQfRdWiTVCttc01SLv5741wVEVzlQJ7znpcHoX0CJwRAniYCnDEMRGAAAZj9QDuEyxorqchWmamSuCZSbKPdlB4BiBZC_ELbtdCag-I76GIZ1tiGlI-r6JsB5370x5UNU-6nOcyp6oawrv4tbqr0nLIfqy7EatXkh3Dvp8r57G3uw_Qb_eyaIfk_b-8eurs4v11c4uX136vF2RJbKuuMO9tapxptCaOCdLzVULc167QC6rxVjnBhS3nHdFsmp2nNFQdHoWPMaUn30NEmdxXD0-xTNmOfrB-GZvKlrSFSciq1oqSgh1_QxzDHqbT7T0kCTKpCkQ1lY0gp-s6sYj828dkQMK-SzUayKZLNq2TDys7BW_Lcjt59bLxbLUC9AVL5mu59_HT629QXvOaFag</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Fernández-Carballo, B. Leticia</creator><creator>McGuiness, Ian</creator><creator>McBeth, Christine</creator><creator>Kalashnikov, Maxim</creator><creator>Borrós, Salvador</creator><creator>Sharon, Andre</creator><creator>Sauer-Budge, Alexis F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5961-5286</orcidid></search><sort><creationdate>20160401</creationdate><title>Low-cost, real-time, continuous flow PCR system for pathogen detection</title><author>Fernández-Carballo, B. Leticia ; McGuiness, Ian ; McBeth, Christine ; Kalashnikov, Maxim ; Borrós, Salvador ; Sharon, Andre ; Sauer-Budge, Alexis F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-fcbcd8a9c14361f5b902b24f9803dec8d156c878d49b56cd9325850d30f44d973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Chlamydia trachomatis - genetics</topic><topic>Chlamydia trachomatis - isolation &amp; purification</topic><topic>Costs and Cost Analysis</topic><topic>Diagnostic tests</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Equipment Design</topic><topic>Escherichia coli O157 - genetics</topic><topic>Escherichia coli O157 - isolation &amp; purification</topic><topic>Microchip Analytical Procedures</topic><topic>Nanotechnology</topic><topic>Pathogens</topic><topic>Point-of-Care Systems</topic><topic>Real-Time Polymerase Chain Reaction - economics</topic><topic>Real-Time Polymerase Chain Reaction - instrumentation</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Carballo, B. Leticia</creatorcontrib><creatorcontrib>McGuiness, Ian</creatorcontrib><creatorcontrib>McBeth, Christine</creatorcontrib><creatorcontrib>Kalashnikov, Maxim</creatorcontrib><creatorcontrib>Borrós, Salvador</creatorcontrib><creatorcontrib>Sharon, Andre</creatorcontrib><creatorcontrib>Sauer-Budge, Alexis F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Carballo, B. Leticia</au><au>McGuiness, Ian</au><au>McBeth, Christine</au><au>Kalashnikov, Maxim</au><au>Borrós, Salvador</au><au>Sharon, Andre</au><au>Sauer-Budge, Alexis F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-cost, real-time, continuous flow PCR system for pathogen detection</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>18</volume><issue>2</issue><spage>34</spage><epage>34</epage><pages>34-34</pages><artnum>34</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26995085</pmid><doi>10.1007/s10544-016-0060-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5961-5286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2016-04, Vol.18 (2), p.34-34, Article 34
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_1775379831
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biomedical engineering
Biomedical Engineering and Bioengineering
Biophysics
Chlamydia trachomatis - genetics
Chlamydia trachomatis - isolation & purification
Costs and Cost Analysis
Diagnostic tests
Engineering
Engineering Fluid Dynamics
Equipment Design
Escherichia coli O157 - genetics
Escherichia coli O157 - isolation & purification
Microchip Analytical Procedures
Nanotechnology
Pathogens
Point-of-Care Systems
Real-Time Polymerase Chain Reaction - economics
Real-Time Polymerase Chain Reaction - instrumentation
Semiconductors
title Low-cost, real-time, continuous flow PCR system for pathogen detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-cost,%20real-time,%20continuous%20flow%20PCR%20system%20for%20pathogen%20detection&rft.jtitle=Biomedical%20microdevices&rft.au=Fern%C3%A1ndez-Carballo,%20B.%20Leticia&rft.date=2016-04-01&rft.volume=18&rft.issue=2&rft.spage=34&rft.epage=34&rft.pages=34-34&rft.artnum=34&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-016-0060-4&rft_dat=%3Cproquest_cross%3E3997503101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775710478&rft_id=info:pmid/26995085&rfr_iscdi=true