Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yel...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2004-12, Vol.22 (12), p.1567-1572 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1572 |
---|---|
container_issue | 12 |
container_start_page | 1567 |
container_title | Nature biotechnology |
container_volume | 22 |
creator | Shaner, Nathan C Campbell, Robert E Steinbach, Paul A Giepmans, Ben N G Palmer, Amy E Tsien, Roger Y |
description | Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology
1
,
2
. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function
3
. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive
4
,
5
. The first true monomer was mRFP1, derived from the
Discosoma
sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation
6
, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions
7
. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies. |
doi_str_mv | 10.1038/nbt1037 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17745749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190351090</galeid><sourcerecordid>A190351090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</originalsourceid><addsrcrecordid>eNqNkluL3CAUx6W0dLfT0m9QpLC9QDPVaDR5XLa3gYWF3l7FmOOQJdFZTdrut-8ZJjDs0ocqeER__3PRQ8hzztacifp9aCe0-gE55ZVUBVeNeoh7VuuC8UqdkCc5XzPGlFTqMTnhVVXVTOpTcrMZdyn-go6OMcQRUu9ogu4djcmGLVAbOnoLwxB_Uz_MMUF2ECaKmgn6kGmHir3apzjSD312McfR0rxb7938S_OUPPJ2yPBssSvy49PH7xdfisurz5uL88vCKc6mQjRcKesxSd6VTLPWly34WndSOl9y3XhlpS6b1jHJZQtCSe5qAOCy805rsSKvDn4x7s0MeTIjpoel2ABxzoZrLSstGwRf3gOv45wC5mZKHI3QQiC0PkBbO4Dpg49Tsg5nB2PvYgDf4_k5b5ioOMN1Rd7eESAzwZ9pa-eczebb1_9nr37eZV8fWJdizgm82aV-tOnWcGb2vWCWXkDyxVLX3I7QHbnl8xE4WwCbnR08_rjr85FToqzLhiP35sBlvMKmSMcHuh_zL0Fvx_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222293733</pqid></control><display><type>article</type><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</creator><creatorcontrib>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</creatorcontrib><description>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology
1
,
2
. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function
3
. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive
4
,
5
. The first true monomer was mRFP1, derived from the
Discosoma
sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation
6
, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions
7
. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt1037</identifier><identifier>PMID: 15558047</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Agriculture ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Anthozoa - genetics ; Anthozoa - metabolism ; Bioinformatics ; Biological and medical sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Discosoma ; Fluorescence ; Fruits ; Fundamental and applied biological sciences. Psychology ; Genetic Enhancement - methods ; letter ; Life Sciences ; Luminescent Proteins - biosynthesis ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Methods. Procedures. Technologies ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein engineering ; Protein Engineering - methods ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Red Fluorescent Protein ; Spectrometry, Fluorescence - methods</subject><ispartof>Nature biotechnology, 2004-12, Vol.22 (12), p.1567-1572</ispartof><rights>Springer Nature Limited 2004</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</citedby><cites>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt1037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt1037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16328291$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15558047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaner, Nathan C</creatorcontrib><creatorcontrib>Campbell, Robert E</creatorcontrib><creatorcontrib>Steinbach, Paul A</creatorcontrib><creatorcontrib>Giepmans, Ben N G</creatorcontrib><creatorcontrib>Palmer, Amy E</creatorcontrib><creatorcontrib>Tsien, Roger Y</creatorcontrib><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology
1
,
2
. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function
3
. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive
4
,
5
. The first true monomer was mRFP1, derived from the
Discosoma
sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation
6
, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions
7
. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</description><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Anthozoa - genetics</subject><subject>Anthozoa - metabolism</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Discosoma</subject><subject>Fluorescence</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Enhancement - methods</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - biosynthesis</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein engineering</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Red Fluorescent Protein</subject><subject>Spectrometry, Fluorescence - methods</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkluL3CAUx6W0dLfT0m9QpLC9QDPVaDR5XLa3gYWF3l7FmOOQJdFZTdrut-8ZJjDs0ocqeER__3PRQ8hzztacifp9aCe0-gE55ZVUBVeNeoh7VuuC8UqdkCc5XzPGlFTqMTnhVVXVTOpTcrMZdyn-go6OMcQRUu9ogu4djcmGLVAbOnoLwxB_Uz_MMUF2ECaKmgn6kGmHir3apzjSD312McfR0rxb7938S_OUPPJ2yPBssSvy49PH7xdfisurz5uL88vCKc6mQjRcKesxSd6VTLPWly34WndSOl9y3XhlpS6b1jHJZQtCSe5qAOCy805rsSKvDn4x7s0MeTIjpoel2ABxzoZrLSstGwRf3gOv45wC5mZKHI3QQiC0PkBbO4Dpg49Tsg5nB2PvYgDf4_k5b5ioOMN1Rd7eESAzwZ9pa-eczebb1_9nr37eZV8fWJdizgm82aV-tOnWcGb2vWCWXkDyxVLX3I7QHbnl8xE4WwCbnR08_rjr85FToqzLhiP35sBlvMKmSMcHuh_zL0Fvx_k</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Shaner, Nathan C</creator><creator>Campbell, Robert E</creator><creator>Steinbach, Paul A</creator><creator>Giepmans, Ben N G</creator><creator>Palmer, Amy E</creator><creator>Tsien, Roger Y</creator><general>Nature Publishing Group UK</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20041201</creationdate><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><author>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Anthozoa - genetics</topic><topic>Anthozoa - metabolism</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Discosoma</topic><topic>Fluorescence</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Enhancement - methods</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - biosynthesis</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein engineering</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Red Fluorescent Protein</topic><topic>Spectrometry, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaner, Nathan C</creatorcontrib><creatorcontrib>Campbell, Robert E</creatorcontrib><creatorcontrib>Steinbach, Paul A</creatorcontrib><creatorcontrib>Giepmans, Ben N G</creatorcontrib><creatorcontrib>Palmer, Amy E</creatorcontrib><creatorcontrib>Tsien, Roger Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaner, Nathan C</au><au>Campbell, Robert E</au><au>Steinbach, Paul A</au><au>Giepmans, Ben N G</au><au>Palmer, Amy E</au><au>Tsien, Roger Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>22</volume><issue>12</issue><spage>1567</spage><epage>1572</epage><pages>1567-1572</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology
1
,
2
. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function
3
. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive
4
,
5
. The first true monomer was mRFP1, derived from the
Discosoma
sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation
6
, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions
7
. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15558047</pmid><doi>10.1038/nbt1037</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2004-12, Vol.22 (12), p.1567-1572 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_17745749 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Agriculture Amino Acid Sequence Amino Acid Substitution Animals Anthozoa - genetics Anthozoa - metabolism Bioinformatics Biological and medical sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Discosoma Fluorescence Fruits Fundamental and applied biological sciences. Psychology Genetic Enhancement - methods letter Life Sciences Luminescent Proteins - biosynthesis Luminescent Proteins - chemistry Luminescent Proteins - genetics Methods. Procedures. Technologies Molecular Sequence Data Mutagenesis, Site-Directed Protein engineering Protein Engineering - methods Proteins Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Red Fluorescent Protein Spectrometry, Fluorescence - methods |
title | Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20monomeric%20red,%20orange%20and%20yellow%20fluorescent%20proteins%20derived%20from%20Discosoma%20sp.%20red%20fluorescent%20protein&rft.jtitle=Nature%20biotechnology&rft.au=Shaner,%20Nathan%20C&rft.date=2004-12-01&rft.volume=22&rft.issue=12&rft.spage=1567&rft.epage=1572&rft.pages=1567-1572&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt1037&rft_dat=%3Cgale_proqu%3EA190351090%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222293733&rft_id=info:pmid/15558047&rft_galeid=A190351090&rfr_iscdi=true |