Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein

Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2004-12, Vol.22 (12), p.1567-1572
Hauptverfasser: Shaner, Nathan C, Campbell, Robert E, Steinbach, Paul A, Giepmans, Ben N G, Palmer, Amy E, Tsien, Roger Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1572
container_issue 12
container_start_page 1567
container_title Nature biotechnology
container_volume 22
creator Shaner, Nathan C
Campbell, Robert E
Steinbach, Paul A
Giepmans, Ben N G
Palmer, Amy E
Tsien, Roger Y
description Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive 4 , 5 . The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation 6 , then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions 7 . Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
doi_str_mv 10.1038/nbt1037
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17745749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190351090</galeid><sourcerecordid>A190351090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</originalsourceid><addsrcrecordid>eNqNkluL3CAUx6W0dLfT0m9QpLC9QDPVaDR5XLa3gYWF3l7FmOOQJdFZTdrut-8ZJjDs0ocqeER__3PRQ8hzztacifp9aCe0-gE55ZVUBVeNeoh7VuuC8UqdkCc5XzPGlFTqMTnhVVXVTOpTcrMZdyn-go6OMcQRUu9ogu4djcmGLVAbOnoLwxB_Uz_MMUF2ECaKmgn6kGmHir3apzjSD312McfR0rxb7938S_OUPPJ2yPBssSvy49PH7xdfisurz5uL88vCKc6mQjRcKesxSd6VTLPWly34WndSOl9y3XhlpS6b1jHJZQtCSe5qAOCy805rsSKvDn4x7s0MeTIjpoel2ABxzoZrLSstGwRf3gOv45wC5mZKHI3QQiC0PkBbO4Dpg49Tsg5nB2PvYgDf4_k5b5ioOMN1Rd7eESAzwZ9pa-eczebb1_9nr37eZV8fWJdizgm82aV-tOnWcGb2vWCWXkDyxVLX3I7QHbnl8xE4WwCbnR08_rjr85FToqzLhiP35sBlvMKmSMcHuh_zL0Fvx_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222293733</pqid></control><display><type>article</type><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</creator><creatorcontrib>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</creatorcontrib><description>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive 4 , 5 . The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation 6 , then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions 7 . Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt1037</identifier><identifier>PMID: 15558047</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Agriculture ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Anthozoa - genetics ; Anthozoa - metabolism ; Bioinformatics ; Biological and medical sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Discosoma ; Fluorescence ; Fruits ; Fundamental and applied biological sciences. Psychology ; Genetic Enhancement - methods ; letter ; Life Sciences ; Luminescent Proteins - biosynthesis ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Methods. Procedures. Technologies ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein engineering ; Protein Engineering - methods ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Red Fluorescent Protein ; Spectrometry, Fluorescence - methods</subject><ispartof>Nature biotechnology, 2004-12, Vol.22 (12), p.1567-1572</ispartof><rights>Springer Nature Limited 2004</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</citedby><cites>FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt1037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt1037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16328291$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15558047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaner, Nathan C</creatorcontrib><creatorcontrib>Campbell, Robert E</creatorcontrib><creatorcontrib>Steinbach, Paul A</creatorcontrib><creatorcontrib>Giepmans, Ben N G</creatorcontrib><creatorcontrib>Palmer, Amy E</creatorcontrib><creatorcontrib>Tsien, Roger Y</creatorcontrib><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive 4 , 5 . The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation 6 , then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions 7 . Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</description><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Anthozoa - genetics</subject><subject>Anthozoa - metabolism</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Discosoma</subject><subject>Fluorescence</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Enhancement - methods</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - biosynthesis</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein engineering</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Red Fluorescent Protein</subject><subject>Spectrometry, Fluorescence - methods</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkluL3CAUx6W0dLfT0m9QpLC9QDPVaDR5XLa3gYWF3l7FmOOQJdFZTdrut-8ZJjDs0ocqeER__3PRQ8hzztacifp9aCe0-gE55ZVUBVeNeoh7VuuC8UqdkCc5XzPGlFTqMTnhVVXVTOpTcrMZdyn-go6OMcQRUu9ogu4djcmGLVAbOnoLwxB_Uz_MMUF2ECaKmgn6kGmHir3apzjSD312McfR0rxb7938S_OUPPJ2yPBssSvy49PH7xdfisurz5uL88vCKc6mQjRcKesxSd6VTLPWly34WndSOl9y3XhlpS6b1jHJZQtCSe5qAOCy805rsSKvDn4x7s0MeTIjpoel2ABxzoZrLSstGwRf3gOv45wC5mZKHI3QQiC0PkBbO4Dpg49Tsg5nB2PvYgDf4_k5b5ioOMN1Rd7eESAzwZ9pa-eczebb1_9nr37eZV8fWJdizgm82aV-tOnWcGb2vWCWXkDyxVLX3I7QHbnl8xE4WwCbnR08_rjr85FToqzLhiP35sBlvMKmSMcHuh_zL0Fvx_k</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Shaner, Nathan C</creator><creator>Campbell, Robert E</creator><creator>Steinbach, Paul A</creator><creator>Giepmans, Ben N G</creator><creator>Palmer, Amy E</creator><creator>Tsien, Roger Y</creator><general>Nature Publishing Group UK</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20041201</creationdate><title>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</title><author>Shaner, Nathan C ; Campbell, Robert E ; Steinbach, Paul A ; Giepmans, Ben N G ; Palmer, Amy E ; Tsien, Roger Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-39166af0471d2070bf2bef87d44cf2179f6a4729bc0414be3641c8eee14dfc773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Anthozoa - genetics</topic><topic>Anthozoa - metabolism</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Discosoma</topic><topic>Fluorescence</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Enhancement - methods</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - biosynthesis</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein engineering</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Red Fluorescent Protein</topic><topic>Spectrometry, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaner, Nathan C</creatorcontrib><creatorcontrib>Campbell, Robert E</creatorcontrib><creatorcontrib>Steinbach, Paul A</creatorcontrib><creatorcontrib>Giepmans, Ben N G</creatorcontrib><creatorcontrib>Palmer, Amy E</creatorcontrib><creatorcontrib>Tsien, Roger Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaner, Nathan C</au><au>Campbell, Robert E</au><au>Steinbach, Paul A</au><au>Giepmans, Ben N G</au><au>Palmer, Amy E</au><au>Tsien, Roger Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>22</volume><issue>12</issue><spage>1567</spage><epage>1572</epage><pages>1567-1572</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology 1 , 2 . When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function 3 . Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive 4 , 5 . The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein “DsRed” by directed evolution first to increase the speed of maturation 6 , then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions 7 . Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15558047</pmid><doi>10.1038/nbt1037</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2004-12, Vol.22 (12), p.1567-1572
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_17745749
source MEDLINE; SpringerLink Journals; Nature
subjects Agriculture
Amino Acid Sequence
Amino Acid Substitution
Animals
Anthozoa - genetics
Anthozoa - metabolism
Bioinformatics
Biological and medical sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Discosoma
Fluorescence
Fruits
Fundamental and applied biological sciences. Psychology
Genetic Enhancement - methods
letter
Life Sciences
Luminescent Proteins - biosynthesis
Luminescent Proteins - chemistry
Luminescent Proteins - genetics
Methods. Procedures. Technologies
Molecular Sequence Data
Mutagenesis, Site-Directed
Protein engineering
Protein Engineering - methods
Proteins
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Red Fluorescent Protein
Spectrometry, Fluorescence - methods
title Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20monomeric%20red,%20orange%20and%20yellow%20fluorescent%20proteins%20derived%20from%20Discosoma%20sp.%20red%20fluorescent%20protein&rft.jtitle=Nature%20biotechnology&rft.au=Shaner,%20Nathan%20C&rft.date=2004-12-01&rft.volume=22&rft.issue=12&rft.spage=1567&rft.epage=1572&rft.pages=1567-1572&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt1037&rft_dat=%3Cgale_proqu%3EA190351090%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222293733&rft_id=info:pmid/15558047&rft_galeid=A190351090&rfr_iscdi=true