Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite

Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology 2014-04, Vol.50 (2), p.280-291
Hauptverfasser: Graham, Linda E, Knack, Jennifer J, Piotrowski, Michael J, Wilcox, Lee W, Cook, Martha E, Wellman, Charles H, Taylor, Wilson, Lewis, Louise A, Arancibia‐Avila, Patricia, Gabrielson, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 280
container_title Journal of phycology
container_volume 50
creator Graham, Linda E
Knack, Jennifer J
Piotrowski, Michael J
Wilcox, Lee W
Cook, Martha E
Wellman, Charles H
Taylor, Wilson
Lewis, Louise A
Arancibia‐Avila, Patricia
Gabrielson, P
description Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.
doi_str_mv 10.1111/jpy.12152
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1774529895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3260897081</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4092-416a23e9b91efe06a8a7479cb557d09425d213382daeef4271551e66c79b38f63</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhwBcAS1zKIa3_Oz5CRRdQVCpBheBiOcmk8jaJFztRu98eb1MqxAUfZqzx743k9xB6Sckxzedks90dU0Yle4RWuZqiLKl-jFaEMFZwJdQBepbShhCilaRP0QFTJiOlXKHryjVzmqIfAZ-HNIUGHy3d9ZDeYje22KUUGu8maPHgmxhqHwbAVzBCzEPs8Ag3eNptAYcOD6GFOOKmD9NfAtf7CZ6jJ53rE7y474fo8uzDt9OPRfVl_en0XVV0ghhWCKoc42BqQ6EDolzptNCmqaXULTGCyZZRzkvWOoBOME2lpKBUo03Ny07xQ3S07N3G8GuGNNnBpwb63o0Q5mSp1iK7VBr5f1RSpQXnqszom3_QTZjjmD-yp6hgqjR76tU9NdcDtHYb_eDizv5xPAMnC3Dje9g9vFNi91HaHKW9i9J-vvhxd8mKYlH4NMHtg8LFa6s019J-P1_btVqTn--ryl5k_vXCdy5YdxV9spdfGaFin79RWvHfeHCnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511426898</pqid></control><display><type>article</type><title>Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Graham, Linda E ; Knack, Jennifer J ; Piotrowski, Michael J ; Wilcox, Lee W ; Cook, Martha E ; Wellman, Charles H ; Taylor, Wilson ; Lewis, Louise A ; Arancibia‐Avila, Patricia ; Gabrielson, P</creator><contributor>Gabrielson, P.</contributor><creatorcontrib>Graham, Linda E ; Knack, Jennifer J ; Piotrowski, Michael J ; Wilcox, Lee W ; Cook, Martha E ; Wellman, Charles H ; Taylor, Wilson ; Lewis, Louise A ; Arancibia‐Avila, Patricia ; Gabrielson, P ; Gabrielson, P.</creatorcontrib><description>Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet &amp; Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included &gt;50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.12152</identifier><identifier>PMID: 26988185</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algae ; biochemical pathways ; biofilm ; carbon ; Cyanobacteria ; Desulfomicrobium ; ecological function ; Freshwater ; genes ; microbial communities ; microbialite ; microbiome ; Microscopy ; Nostoc ; Nostoc commune ; Nostocales ; photosynthesis ; proteins ; spectroscopy ; sulfate reduction ; X-ray spectroscopy</subject><ispartof>Journal of phycology, 2014-04, Vol.50 (2), p.280-291</ispartof><rights>2014 The Authors Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America</rights><rights>2014 The Authors Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.</rights><rights>2014, Phycological Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.12152$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.12152$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26988185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gabrielson, P.</contributor><creatorcontrib>Graham, Linda E</creatorcontrib><creatorcontrib>Knack, Jennifer J</creatorcontrib><creatorcontrib>Piotrowski, Michael J</creatorcontrib><creatorcontrib>Wilcox, Lee W</creatorcontrib><creatorcontrib>Cook, Martha E</creatorcontrib><creatorcontrib>Wellman, Charles H</creatorcontrib><creatorcontrib>Taylor, Wilson</creatorcontrib><creatorcontrib>Lewis, Louise A</creatorcontrib><creatorcontrib>Arancibia‐Avila, Patricia</creatorcontrib><creatorcontrib>Gabrielson, P</creatorcontrib><title>Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite</title><title>Journal of phycology</title><addtitle>J. Phycol</addtitle><description>Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet &amp; Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included &gt;50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.</description><subject>Algae</subject><subject>biochemical pathways</subject><subject>biofilm</subject><subject>carbon</subject><subject>Cyanobacteria</subject><subject>Desulfomicrobium</subject><subject>ecological function</subject><subject>Freshwater</subject><subject>genes</subject><subject>microbial communities</subject><subject>microbialite</subject><subject>microbiome</subject><subject>Microscopy</subject><subject>Nostoc</subject><subject>Nostoc commune</subject><subject>Nostocales</subject><subject>photosynthesis</subject><subject>proteins</subject><subject>spectroscopy</subject><subject>sulfate reduction</subject><subject>X-ray spectroscopy</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU9v1DAQxS0EokvhwBcAS1zKIa3_Oz5CRRdQVCpBheBiOcmk8jaJFztRu98eb1MqxAUfZqzx743k9xB6Sckxzedks90dU0Yle4RWuZqiLKl-jFaEMFZwJdQBepbShhCilaRP0QFTJiOlXKHryjVzmqIfAZ-HNIUGHy3d9ZDeYje22KUUGu8maPHgmxhqHwbAVzBCzEPs8Ag3eNptAYcOD6GFOOKmD9NfAtf7CZ6jJ53rE7y474fo8uzDt9OPRfVl_en0XVV0ghhWCKoc42BqQ6EDolzptNCmqaXULTGCyZZRzkvWOoBOME2lpKBUo03Ny07xQ3S07N3G8GuGNNnBpwb63o0Q5mSp1iK7VBr5f1RSpQXnqszom3_QTZjjmD-yp6hgqjR76tU9NdcDtHYb_eDizv5xPAMnC3Dje9g9vFNi91HaHKW9i9J-vvhxd8mKYlH4NMHtg8LFa6s019J-P1_btVqTn--ryl5k_vXCdy5YdxV9spdfGaFin79RWvHfeHCnzA</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Graham, Linda E</creator><creator>Knack, Jennifer J</creator><creator>Piotrowski, Michael J</creator><creator>Wilcox, Lee W</creator><creator>Cook, Martha E</creator><creator>Wellman, Charles H</creator><creator>Taylor, Wilson</creator><creator>Lewis, Louise A</creator><creator>Arancibia‐Avila, Patricia</creator><creator>Gabrielson, P</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H98</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite</title><author>Graham, Linda E ; Knack, Jennifer J ; Piotrowski, Michael J ; Wilcox, Lee W ; Cook, Martha E ; Wellman, Charles H ; Taylor, Wilson ; Lewis, Louise A ; Arancibia‐Avila, Patricia ; Gabrielson, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4092-416a23e9b91efe06a8a7479cb557d09425d213382daeef4271551e66c79b38f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algae</topic><topic>biochemical pathways</topic><topic>biofilm</topic><topic>carbon</topic><topic>Cyanobacteria</topic><topic>Desulfomicrobium</topic><topic>ecological function</topic><topic>Freshwater</topic><topic>genes</topic><topic>microbial communities</topic><topic>microbialite</topic><topic>microbiome</topic><topic>Microscopy</topic><topic>Nostoc</topic><topic>Nostoc commune</topic><topic>Nostocales</topic><topic>photosynthesis</topic><topic>proteins</topic><topic>spectroscopy</topic><topic>sulfate reduction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Linda E</creatorcontrib><creatorcontrib>Knack, Jennifer J</creatorcontrib><creatorcontrib>Piotrowski, Michael J</creatorcontrib><creatorcontrib>Wilcox, Lee W</creatorcontrib><creatorcontrib>Cook, Martha E</creatorcontrib><creatorcontrib>Wellman, Charles H</creatorcontrib><creatorcontrib>Taylor, Wilson</creatorcontrib><creatorcontrib>Lewis, Louise A</creatorcontrib><creatorcontrib>Arancibia‐Avila, Patricia</creatorcontrib><creatorcontrib>Gabrielson, P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Linda E</au><au>Knack, Jennifer J</au><au>Piotrowski, Michael J</au><au>Wilcox, Lee W</au><au>Cook, Martha E</au><au>Wellman, Charles H</au><au>Taylor, Wilson</au><au>Lewis, Louise A</au><au>Arancibia‐Avila, Patricia</au><au>Gabrielson, P</au><au>Gabrielson, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite</atitle><jtitle>Journal of phycology</jtitle><addtitle>J. Phycol</addtitle><date>2014-04</date><risdate>2014</risdate><volume>50</volume><issue>2</issue><spage>280</spage><epage>291</epage><pages>280-291</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet &amp; Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included &gt;50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26988185</pmid><doi>10.1111/jpy.12152</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3646
ispartof Journal of phycology, 2014-04, Vol.50 (2), p.280-291
issn 0022-3646
1529-8817
language eng
recordid cdi_proquest_miscellaneous_1774529895
source Wiley Online Library - AutoHoldings Journals
subjects Algae
biochemical pathways
biofilm
carbon
Cyanobacteria
Desulfomicrobium
ecological function
Freshwater
genes
microbial communities
microbialite
microbiome
Microscopy
Nostoc
Nostoc commune
Nostocales
photosynthesis
proteins
spectroscopy
sulfate reduction
X-ray spectroscopy
title Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lacustrine%20Nostoc%20(Nostocales)%20and%20associated%20microbiome%20generate%20a%20new%20type%20of%20modern%20clotted%20microbialite&rft.jtitle=Journal%20of%20phycology&rft.au=Graham,%20Linda%20E&rft.date=2014-04&rft.volume=50&rft.issue=2&rft.spage=280&rft.epage=291&rft.pages=280-291&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.12152&rft_dat=%3Cproquest_pubme%3E3260897081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511426898&rft_id=info:pmid/26988185&rfr_iscdi=true