Structural Design of Oligopeptides for Intestinal Transport Model

Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2016-03, Vol.64 (10), p.2072-2079
Hauptverfasser: Hong, Seong-Min, Tanaka, Mitsuru, Koyanagi, Riho, Shen, Weilin, Matsui, Toshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2079
container_issue 10
container_start_page 2072
container_title Journal of agricultural and food chemistry
container_volume 64
creator Hong, Seong-Min
Tanaka, Mitsuru
Koyanagi, Riho
Shen, Weilin
Matsui, Toshiro
description Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p < 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.
doi_str_mv 10.1021/acs.jafc.6b00279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1774164217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774164217</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-184e7e972c8d9ad3bb2f69010ee2c8a1365f58ac7e1fcee9352bde48dd7873f23</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EglLYmVBGBlJ8nYedEfGsVNSBMluOfV2lSuNgJwP_HpcWNqYrHX3n6Ooj5AroDCiDO6XDbKOsnpU1pYxXR2QCBaNpASCOySRmkIqihDNyHsKGUioKTk_JGSsrllPIJuT-ffCjHkav2uQRQ7PuEmeTZdusXY_90BgMiXU-mXcDhqHpIrbyqgu980Py5gy2F-TEqjbg5eFOycfz0-rhNV0sX-YP94tU5ZQNKYgcOVacaWEqZbK6ZrasKFDEGCnIysIWQmmOYDVilRWsNpgLY7jgmWXZlNzsd3vvPsf4jNw2QWPbqg7dGCRwnkOZM-ARpXtUexeCRyt732yV_5JA5U6cjOLkTpw8iIuV68P6WG_R_BV-TUXgdg_8VN3oo4rw_943xw556w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774164217</pqid></control><display><type>article</type><title>Structural Design of Oligopeptides for Intestinal Transport Model</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hong, Seong-Min ; Tanaka, Mitsuru ; Koyanagi, Riho ; Shen, Weilin ; Matsui, Toshiro</creator><creatorcontrib>Hong, Seong-Min ; Tanaka, Mitsuru ; Koyanagi, Riho ; Shen, Weilin ; Matsui, Toshiro</creatorcontrib><description>Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p &lt; 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.6b00279</identifier><identifier>PMID: 26924013</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biological Transport ; Caco-2 Cells ; Drug Design ; Humans ; Intestinal Absorption ; Intestines - metabolism ; Oligopeptides - chemistry ; Oligopeptides - metabolism ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Journal of agricultural and food chemistry, 2016-03, Vol.64 (10), p.2072-2079</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-184e7e972c8d9ad3bb2f69010ee2c8a1365f58ac7e1fcee9352bde48dd7873f23</citedby><cites>FETCH-LOGICAL-a402t-184e7e972c8d9ad3bb2f69010ee2c8a1365f58ac7e1fcee9352bde48dd7873f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.6b00279$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.6b00279$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26924013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Seong-Min</creatorcontrib><creatorcontrib>Tanaka, Mitsuru</creatorcontrib><creatorcontrib>Koyanagi, Riho</creatorcontrib><creatorcontrib>Shen, Weilin</creatorcontrib><creatorcontrib>Matsui, Toshiro</creatorcontrib><title>Structural Design of Oligopeptides for Intestinal Transport Model</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p &lt; 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Caco-2 Cells</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Intestinal Absorption</subject><subject>Intestines - metabolism</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EglLYmVBGBlJ8nYedEfGsVNSBMluOfV2lSuNgJwP_HpcWNqYrHX3n6Ooj5AroDCiDO6XDbKOsnpU1pYxXR2QCBaNpASCOySRmkIqihDNyHsKGUioKTk_JGSsrllPIJuT-ffCjHkav2uQRQ7PuEmeTZdusXY_90BgMiXU-mXcDhqHpIrbyqgu980Py5gy2F-TEqjbg5eFOycfz0-rhNV0sX-YP94tU5ZQNKYgcOVacaWEqZbK6ZrasKFDEGCnIysIWQmmOYDVilRWsNpgLY7jgmWXZlNzsd3vvPsf4jNw2QWPbqg7dGCRwnkOZM-ARpXtUexeCRyt732yV_5JA5U6cjOLkTpw8iIuV68P6WG_R_BV-TUXgdg_8VN3oo4rw_943xw556w</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Hong, Seong-Min</creator><creator>Tanaka, Mitsuru</creator><creator>Koyanagi, Riho</creator><creator>Shen, Weilin</creator><creator>Matsui, Toshiro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160316</creationdate><title>Structural Design of Oligopeptides for Intestinal Transport Model</title><author>Hong, Seong-Min ; Tanaka, Mitsuru ; Koyanagi, Riho ; Shen, Weilin ; Matsui, Toshiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-184e7e972c8d9ad3bb2f69010ee2c8a1365f58ac7e1fcee9352bde48dd7873f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Caco-2 Cells</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Intestinal Absorption</topic><topic>Intestines - metabolism</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Seong-Min</creatorcontrib><creatorcontrib>Tanaka, Mitsuru</creatorcontrib><creatorcontrib>Koyanagi, Riho</creatorcontrib><creatorcontrib>Shen, Weilin</creatorcontrib><creatorcontrib>Matsui, Toshiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Seong-Min</au><au>Tanaka, Mitsuru</au><au>Koyanagi, Riho</au><au>Shen, Weilin</au><au>Matsui, Toshiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Design of Oligopeptides for Intestinal Transport Model</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2016-03-16</date><risdate>2016</risdate><volume>64</volume><issue>10</issue><spage>2072</spage><epage>2079</epage><pages>2072-2079</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p &lt; 0.05) lower transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26924013</pmid><doi>10.1021/acs.jafc.6b00279</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2016-03, Vol.64 (10), p.2072-2079
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1774164217
source ACS Publications; MEDLINE
subjects Animals
Biological Transport
Caco-2 Cells
Drug Design
Humans
Intestinal Absorption
Intestines - metabolism
Oligopeptides - chemistry
Oligopeptides - metabolism
Rats
Rats, Sprague-Dawley
title Structural Design of Oligopeptides for Intestinal Transport Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Design%20of%20Oligopeptides%20for%20Intestinal%20Transport%20Model&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Hong,%20Seong-Min&rft.date=2016-03-16&rft.volume=64&rft.issue=10&rft.spage=2072&rft.epage=2079&rft.pages=2072-2079&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.6b00279&rft_dat=%3Cproquest_cross%3E1774164217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774164217&rft_id=info:pmid/26924013&rfr_iscdi=true