Real-time functional characterization of cationic amino acid transporters using a new FRET sensor

L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2016-04, Vol.468 (4), p.563-572
Hauptverfasser: Vanoaica, Liviu, Behera, Alok, Camargo, Simone M. R., Forster, Ian C., Verrey, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 4
container_start_page 563
container_title Pflügers Archiv
container_volume 468
creator Vanoaica, Liviu
Behera, Alok
Camargo, Simone M. R.
Forster, Ian C.
Verrey, François
description L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genetically encoded Förster resonance energy transfer (FRET)-based arginine nanosensor that employs the arginine repressor/activator ahrC gene from Bacillus subtilis . This new nanosensor was expressed in HEK293T cells, and experiments with cell lysate showed that it binds L-arginine with high specificity and with a K d of ∼177 μM. Live imaging experiments showed that the nanosensor was expressed throughout the cytoplasm and displayed a half maximal FRET increase at an extracellular L-arginine concentration of ∼22 μM. By expressing the nanosensor together with SLC7A1, SLC7A2B, or SLC7A3 cationic amino acid transporters (CAT1–3), it was shown that L-arginine was imported at a similar rate via SLC7A1 and SLC7A2B and slower via SLC7A3. In contrast, upon withdrawal of extracellular L-arginine, intracellular levels decreased as fast in SLC7A3-expressing cells compared with SLC7A1, but the efflux was slower via SLC7A2B. SLC7A4 (CAT4) could not be convincingly shown to transport L-arginine. We also demonstrated the impact of membrane potential on L-arginine transport and showed that physiological concentrations of symmetrical and asymmetrical dimethylarginine do not significantly interfere with L-arginine transport through SLC7A1. Our results demonstrate that the FRET nanosensor can be used to assess L-arginine transport through plasma membrane in real time.
doi_str_mv 10.1007/s00424-015-1754-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1774162685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3984818291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c7df8164c3d9b6752a15757d20bf6e9af8de7c06527d372dcd16eb70c73ecd103</originalsourceid><addsrcrecordid>eNp1kF1LHTEQhkOx1KP2B3gjAW-8STv53r0soq0gFESvQ06StZHd5DTZpeivN8ejUgq9ypB55h3mQeiYwhcKoL9WAMEEASoJ1VKQ_gNaUcEZYUD5HloBcEqUVt0-Oqj1AQCY6NgntM-UlFIrWCF7E-xI5jgFPCzJzTEnO2L3yxbr5lDik91-4Txg91JFh-0UU8bWRY_nYlPd5NLIipca0z22OIU_-PLm4hbXkGouR-jjYMcaPr--h-ju8uL2_Ae5_vn96vzbNXFCsJk47YeOKuG479dKS2ap1FJ7ButBhd4OnQ_agZJMe66Zd56qsNbgNA-tBn6Izna5m5J_L6HOZorVhXG0KeSlGqq1oIqpTjb09B_0IS-lHf5CccY72dNG0R3lSq61hMFsSpxseTQUzNa_2fk3zb_Z-jd9mzl5TV7WU_DvE2_CG8B2QG2tdB_KX6v_m_oMLt2QWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773238591</pqid></control><display><type>article</type><title>Real-time functional characterization of cationic amino acid transporters using a new FRET sensor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Vanoaica, Liviu ; Behera, Alok ; Camargo, Simone M. R. ; Forster, Ian C. ; Verrey, François</creator><creatorcontrib>Vanoaica, Liviu ; Behera, Alok ; Camargo, Simone M. R. ; Forster, Ian C. ; Verrey, François</creatorcontrib><description>L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genetically encoded Förster resonance energy transfer (FRET)-based arginine nanosensor that employs the arginine repressor/activator ahrC gene from Bacillus subtilis . This new nanosensor was expressed in HEK293T cells, and experiments with cell lysate showed that it binds L-arginine with high specificity and with a K d of ∼177 μM. Live imaging experiments showed that the nanosensor was expressed throughout the cytoplasm and displayed a half maximal FRET increase at an extracellular L-arginine concentration of ∼22 μM. By expressing the nanosensor together with SLC7A1, SLC7A2B, or SLC7A3 cationic amino acid transporters (CAT1–3), it was shown that L-arginine was imported at a similar rate via SLC7A1 and SLC7A2B and slower via SLC7A3. In contrast, upon withdrawal of extracellular L-arginine, intracellular levels decreased as fast in SLC7A3-expressing cells compared with SLC7A1, but the efflux was slower via SLC7A2B. SLC7A4 (CAT4) could not be convincingly shown to transport L-arginine. We also demonstrated the impact of membrane potential on L-arginine transport and showed that physiological concentrations of symmetrical and asymmetrical dimethylarginine do not significantly interfere with L-arginine transport through SLC7A1. Our results demonstrate that the FRET nanosensor can be used to assess L-arginine transport through plasma membrane in real time.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-015-1754-9</identifier><identifier>PMID: 26555760</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arginine - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Biosensing Techniques - methods ; Cationic Amino Acid Transporter 1 - metabolism ; Cell Biology ; Fluorescence Resonance Energy Transfer - methods ; HEK293 Cells ; Human Physiology ; Humans ; Ion Channels ; Membrane Potentials ; Molecular Medicine ; Neurosciences ; Receptors ; Receptors and Transporters ; Repressor Proteins - chemistry ; Repressor Proteins - metabolism ; Trans-Activators - chemistry ; Trans-Activators - metabolism</subject><ispartof>Pflügers Archiv, 2016-04, Vol.468 (4), p.563-572</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c7df8164c3d9b6752a15757d20bf6e9af8de7c06527d372dcd16eb70c73ecd103</citedby><cites>FETCH-LOGICAL-c442t-c7df8164c3d9b6752a15757d20bf6e9af8de7c06527d372dcd16eb70c73ecd103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-015-1754-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-015-1754-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26555760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanoaica, Liviu</creatorcontrib><creatorcontrib>Behera, Alok</creatorcontrib><creatorcontrib>Camargo, Simone M. R.</creatorcontrib><creatorcontrib>Forster, Ian C.</creatorcontrib><creatorcontrib>Verrey, François</creatorcontrib><title>Real-time functional characterization of cationic amino acid transporters using a new FRET sensor</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genetically encoded Förster resonance energy transfer (FRET)-based arginine nanosensor that employs the arginine repressor/activator ahrC gene from Bacillus subtilis . This new nanosensor was expressed in HEK293T cells, and experiments with cell lysate showed that it binds L-arginine with high specificity and with a K d of ∼177 μM. Live imaging experiments showed that the nanosensor was expressed throughout the cytoplasm and displayed a half maximal FRET increase at an extracellular L-arginine concentration of ∼22 μM. By expressing the nanosensor together with SLC7A1, SLC7A2B, or SLC7A3 cationic amino acid transporters (CAT1–3), it was shown that L-arginine was imported at a similar rate via SLC7A1 and SLC7A2B and slower via SLC7A3. In contrast, upon withdrawal of extracellular L-arginine, intracellular levels decreased as fast in SLC7A3-expressing cells compared with SLC7A1, but the efflux was slower via SLC7A2B. SLC7A4 (CAT4) could not be convincingly shown to transport L-arginine. We also demonstrated the impact of membrane potential on L-arginine transport and showed that physiological concentrations of symmetrical and asymmetrical dimethylarginine do not significantly interfere with L-arginine transport through SLC7A1. Our results demonstrate that the FRET nanosensor can be used to assess L-arginine transport through plasma membrane in real time.</description><subject>Arginine - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosensing Techniques - methods</subject><subject>Cationic Amino Acid Transporter 1 - metabolism</subject><subject>Cell Biology</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>HEK293 Cells</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Ion Channels</subject><subject>Membrane Potentials</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Receptors</subject><subject>Receptors and Transporters</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - metabolism</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - metabolism</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kF1LHTEQhkOx1KP2B3gjAW-8STv53r0soq0gFESvQ06StZHd5DTZpeivN8ejUgq9ypB55h3mQeiYwhcKoL9WAMEEASoJ1VKQ_gNaUcEZYUD5HloBcEqUVt0-Oqj1AQCY6NgntM-UlFIrWCF7E-xI5jgFPCzJzTEnO2L3yxbr5lDik91-4Txg91JFh-0UU8bWRY_nYlPd5NLIipca0z22OIU_-PLm4hbXkGouR-jjYMcaPr--h-ju8uL2_Ae5_vn96vzbNXFCsJk47YeOKuG479dKS2ap1FJ7ButBhd4OnQ_agZJMe66Zd56qsNbgNA-tBn6Izna5m5J_L6HOZorVhXG0KeSlGqq1oIqpTjb09B_0IS-lHf5CccY72dNG0R3lSq61hMFsSpxseTQUzNa_2fk3zb_Z-jd9mzl5TV7WU_DvE2_CG8B2QG2tdB_KX6v_m_oMLt2QWA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Vanoaica, Liviu</creator><creator>Behera, Alok</creator><creator>Camargo, Simone M. R.</creator><creator>Forster, Ian C.</creator><creator>Verrey, François</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Real-time functional characterization of cationic amino acid transporters using a new FRET sensor</title><author>Vanoaica, Liviu ; Behera, Alok ; Camargo, Simone M. R. ; Forster, Ian C. ; Verrey, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c7df8164c3d9b6752a15757d20bf6e9af8de7c06527d372dcd16eb70c73ecd103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arginine - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosensing Techniques - methods</topic><topic>Cationic Amino Acid Transporter 1 - metabolism</topic><topic>Cell Biology</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>HEK293 Cells</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Ion Channels</topic><topic>Membrane Potentials</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Receptors</topic><topic>Receptors and Transporters</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - metabolism</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanoaica, Liviu</creatorcontrib><creatorcontrib>Behera, Alok</creatorcontrib><creatorcontrib>Camargo, Simone M. R.</creatorcontrib><creatorcontrib>Forster, Ian C.</creatorcontrib><creatorcontrib>Verrey, François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanoaica, Liviu</au><au>Behera, Alok</au><au>Camargo, Simone M. R.</au><au>Forster, Ian C.</au><au>Verrey, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time functional characterization of cationic amino acid transporters using a new FRET sensor</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>468</volume><issue>4</issue><spage>563</spage><epage>572</epage><pages>563-572</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>L-arginine is a semi-essential amino acid that serves as precursor for the production of urea, nitric oxide (NO), polyamines, and other biologically important metabolites. Hence, a fast and reliable assessment of its intracellular concentration changes is highly desirable. Here, we report on a genetically encoded Förster resonance energy transfer (FRET)-based arginine nanosensor that employs the arginine repressor/activator ahrC gene from Bacillus subtilis . This new nanosensor was expressed in HEK293T cells, and experiments with cell lysate showed that it binds L-arginine with high specificity and with a K d of ∼177 μM. Live imaging experiments showed that the nanosensor was expressed throughout the cytoplasm and displayed a half maximal FRET increase at an extracellular L-arginine concentration of ∼22 μM. By expressing the nanosensor together with SLC7A1, SLC7A2B, or SLC7A3 cationic amino acid transporters (CAT1–3), it was shown that L-arginine was imported at a similar rate via SLC7A1 and SLC7A2B and slower via SLC7A3. In contrast, upon withdrawal of extracellular L-arginine, intracellular levels decreased as fast in SLC7A3-expressing cells compared with SLC7A1, but the efflux was slower via SLC7A2B. SLC7A4 (CAT4) could not be convincingly shown to transport L-arginine. We also demonstrated the impact of membrane potential on L-arginine transport and showed that physiological concentrations of symmetrical and asymmetrical dimethylarginine do not significantly interfere with L-arginine transport through SLC7A1. Our results demonstrate that the FRET nanosensor can be used to assess L-arginine transport through plasma membrane in real time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26555760</pmid><doi>10.1007/s00424-015-1754-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2016-04, Vol.468 (4), p.563-572
issn 0031-6768
1432-2013
language eng
recordid cdi_proquest_miscellaneous_1774162685
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Arginine - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Biomedical and Life Sciences
Biomedicine
Biosensing Techniques - methods
Cationic Amino Acid Transporter 1 - metabolism
Cell Biology
Fluorescence Resonance Energy Transfer - methods
HEK293 Cells
Human Physiology
Humans
Ion Channels
Membrane Potentials
Molecular Medicine
Neurosciences
Receptors
Receptors and Transporters
Repressor Proteins - chemistry
Repressor Proteins - metabolism
Trans-Activators - chemistry
Trans-Activators - metabolism
title Real-time functional characterization of cationic amino acid transporters using a new FRET sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20functional%20characterization%20of%20cationic%20amino%20acid%20transporters%20using%20a%20new%20FRET%20sensor&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Vanoaica,%20Liviu&rft.date=2016-04-01&rft.volume=468&rft.issue=4&rft.spage=563&rft.epage=572&rft.pages=563-572&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-015-1754-9&rft_dat=%3Cproquest_cross%3E3984818291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773238591&rft_id=info:pmid/26555760&rfr_iscdi=true