Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics

Trapped ion mobility spectrometry (TIMS) is a new high resolution ( R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2016-04, Vol.27 (4), p.585-595
Hauptverfasser: Silveira, Joshua A., Michelmann, Karsten, Ridgeway, Mark E., Park, Melvin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4
container_start_page 585
container_title Journal of the American Society for Mass Spectrometry
container_volume 27
creator Silveira, Joshua A.
Michelmann, Karsten
Ridgeway, Mark E.
Park, Melvin A.
description Trapped ion mobility spectrometry (TIMS) is a new high resolution ( R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ
doi_str_mv 10.1007/s13361-015-1310-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1774162247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774162247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d992b4709842b741f262115b3fa0e32fc31f04d988a78aeaedee5f57211f68c83</originalsourceid><addsrcrecordid>eNp1kE1LwzAYgIMobk5_gBcJePFSzZukTepN1GlhouA8h7RNpKNfJu1h-_VGNkUETwnkeZ-8PAidArkEQsSVB8YSiAjEETAg0WYPTUGKNAKgbD_cCecRYSSeoCPvV4SAIKk4RBOayISLlE1RNh_bUjemHXTtcWfx0um-NyXOuhY_dXlVV8Mav_amGFzXmMGt8Yt2A86yazyvx6rEd-tWN1Xhj9GBDQ5zsjtn6G1-v7x9jBbPD9ntzSIqmKBDVKYpzXnYQ3KaCw6WJhQgzpnVxDBqCwaW8DKVUgupjTalMbGNRYBsIgvJZuhi6-1d9zEaP6im8oWpa92abvQKRLAmlHIR0PM_6KobXRu2U5AmknBGGAQKtlThOu-dsap3VaPdWgFRX53VtrMKndVXZ7UJM2c785g3pvyZ-A4bALoFfHhq34379fW_1k9wzIbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968043031</pqid></control><display><type>article</type><title>Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Silveira, Joshua A. ; Michelmann, Karsten ; Ridgeway, Mark E. ; Park, Melvin A.</creator><creatorcontrib>Silveira, Joshua A. ; Michelmann, Karsten ; Ridgeway, Mark E. ; Park, Melvin A.</creatorcontrib><description>Trapped ion mobility spectrometry (TIMS) is a new high resolution ( R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-015-1310-z</identifier><identifier>PMID: 26864793</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Computer simulation ; Drag ; Electric fields ; Elution ; Fluid dynamics ; Ionic mobility ; Ions ; Laminar flow ; Mass spectrometry ; Mathematical models ; Organic Chemistry ; Position measurement ; Proteomics ; Research Article ; Resolution ; Scientific imaging ; Spectrometry ; Spectroscopy</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2016-04, Vol.27 (4), p.585-595</ispartof><rights>American Society for Mass Spectrometry 2015</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d992b4709842b741f262115b3fa0e32fc31f04d988a78aeaedee5f57211f68c83</citedby><cites>FETCH-LOGICAL-c372t-d992b4709842b741f262115b3fa0e32fc31f04d988a78aeaedee5f57211f68c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-015-1310-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-015-1310-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26864793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silveira, Joshua A.</creatorcontrib><creatorcontrib>Michelmann, Karsten</creatorcontrib><creatorcontrib>Ridgeway, Mark E.</creatorcontrib><creatorcontrib>Park, Melvin A.</creatorcontrib><title>Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Trapped ion mobility spectrometry (TIMS) is a new high resolution ( R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ</description><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drag</subject><subject>Electric fields</subject><subject>Elution</subject><subject>Fluid dynamics</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Laminar flow</subject><subject>Mass spectrometry</subject><subject>Mathematical models</subject><subject>Organic Chemistry</subject><subject>Position measurement</subject><subject>Proteomics</subject><subject>Research Article</subject><subject>Resolution</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LwzAYgIMobk5_gBcJePFSzZukTepN1GlhouA8h7RNpKNfJu1h-_VGNkUETwnkeZ-8PAidArkEQsSVB8YSiAjEETAg0WYPTUGKNAKgbD_cCecRYSSeoCPvV4SAIKk4RBOayISLlE1RNh_bUjemHXTtcWfx0um-NyXOuhY_dXlVV8Mav_amGFzXmMGt8Yt2A86yazyvx6rEd-tWN1Xhj9GBDQ5zsjtn6G1-v7x9jBbPD9ntzSIqmKBDVKYpzXnYQ3KaCw6WJhQgzpnVxDBqCwaW8DKVUgupjTalMbGNRYBsIgvJZuhi6-1d9zEaP6im8oWpa92abvQKRLAmlHIR0PM_6KobXRu2U5AmknBGGAQKtlThOu-dsap3VaPdWgFRX53VtrMKndVXZ7UJM2c785g3pvyZ-A4bALoFfHhq34379fW_1k9wzIbM</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Silveira, Joshua A.</creator><creator>Michelmann, Karsten</creator><creator>Ridgeway, Mark E.</creator><creator>Park, Melvin A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics</title><author>Silveira, Joshua A. ; Michelmann, Karsten ; Ridgeway, Mark E. ; Park, Melvin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d992b4709842b741f262115b3fa0e32fc31f04d988a78aeaedee5f57211f68c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drag</topic><topic>Electric fields</topic><topic>Elution</topic><topic>Fluid dynamics</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Laminar flow</topic><topic>Mass spectrometry</topic><topic>Mathematical models</topic><topic>Organic Chemistry</topic><topic>Position measurement</topic><topic>Proteomics</topic><topic>Research Article</topic><topic>Resolution</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silveira, Joshua A.</creatorcontrib><creatorcontrib>Michelmann, Karsten</creatorcontrib><creatorcontrib>Ridgeway, Mark E.</creatorcontrib><creatorcontrib>Park, Melvin A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silveira, Joshua A.</au><au>Michelmann, Karsten</au><au>Ridgeway, Mark E.</au><au>Park, Melvin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>27</volume><issue>4</issue><spage>585</spage><epage>595</epage><pages>585-595</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Trapped ion mobility spectrometry (TIMS) is a new high resolution ( R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26864793</pmid><doi>10.1007/s13361-015-1310-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2016-04, Vol.27 (4), p.585-595
issn 1044-0305
1879-1123
language eng
recordid cdi_proquest_miscellaneous_1774162247
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Bioinformatics
Biotechnology
Chemistry
Chemistry and Materials Science
Computational fluid dynamics
Computer simulation
Drag
Electric fields
Elution
Fluid dynamics
Ionic mobility
Ions
Laminar flow
Mass spectrometry
Mathematical models
Organic Chemistry
Position measurement
Proteomics
Research Article
Resolution
Scientific imaging
Spectrometry
Spectroscopy
title Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamentals%20of%20Trapped%20Ion%20Mobility%20Spectrometry%20Part%20II:%20Fluid%20Dynamics&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Silveira,%20Joshua%20A.&rft.date=2016-04-01&rft.volume=27&rft.issue=4&rft.spage=585&rft.epage=595&rft.pages=585-595&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-015-1310-z&rft_dat=%3Cproquest_cross%3E1774162247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968043031&rft_id=info:pmid/26864793&rfr_iscdi=true