What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta

1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater biology 1999-06, Vol.41 (4), p.687-705
Hauptverfasser: Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank, J. L., Hutchens, J. J., D'Angelo, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 4
container_start_page 687
container_title Freshwater biology
container_volume 41
creator Webster, J. R.
Benfield, E. F.
Ehrman, T. P.
Schaeffer, M. A.
Tank, J. L.
Hutchens, J. J.
D'Angelo, D. J.
description 1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (
doi_str_mv 10.1046/j.1365-2427.1999.00409.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17740896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17740896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4669-e7dffae62cd5ac6f864dfcea5be8cdd84ef021c027a01f07442cfc7ae7339d823</originalsourceid><addsrcrecordid>eNqNkdGK1DAUhosoOK6-QxDxrjVJ0yQFQXYHd9110BtlLkM2PaEZ26QmHWbm7U2dZQWv9ioh5_v-cPiLAhFcEcz4h11Fat6UlFFRkbZtK4wZbqvjs2L1OHherPIrLxss8MviVUo7jLFsBF0Vp22vZ9TraQKf0ByQHoZg-rkPPuwTGvUM0ekBzQtm8zAh5zOW5gh6TJ_QJUonP_eQXELBIg8HpH2Hpv394FIPXcZtiDnHBY9sDCNahwPArF8XL3JegjcP50Xx8_rzj_WXcvP95nZ9uSkN47wtQXTWauDUdI023ErOOmtAN_cgTddJBhZTYjAVGhOLBWPUWCM0iLpuO0nri-L9OXeK4fce0qxGlwwMg_aQV1RECIZly58A1rLFEmfw7X_gLuyjz0soWhPWUEyXb-UZMjGkFMGqKbpRx5MiWC3NqZ1aClJLQWppTv1tTh2z-u4hXyejBxu1Ny7986WsmRQZ-3jGDm6A05Pj1fX2Kl-yXp51l2Y4Puo6_lJc1KJR2283imyuxPau2aiv9R9jb705</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231452022</pqid></control><display><type>article</type><title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Webster, J. R. ; Benfield, E. F. ; Ehrman, T. P. ; Schaeffer, M. A. ; Tank, J. L. ; Hutchens, J. J. ; D'Angelo, D. J.</creator><creatorcontrib>Webster, J. R. ; Benfield, E. F. ; Ehrman, T. P. ; Schaeffer, M. A. ; Tank, J. L. ; Hutchens, J. J. ; D'Angelo, D. J.</creatorcontrib><description>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (&lt;_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</description><identifier>ISSN: 0046-5070</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1046/j.1365-2427.1999.00409.x</identifier><identifier>CODEN: FWBLAB</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science, Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; breakdown ; Coweeta ; detritus ; Fresh water ecosystems ; Freshwater ; Fundamental and applied biological sciences. Psychology ; stream ; Synecology ; transport ; USA, North Carolina ; USA, North Carolina, Otto</subject><ispartof>Freshwater biology, 1999-06, Vol.41 (4), p.687-705</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright Blackwell Science Ltd. Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4669-e7dffae62cd5ac6f864dfcea5be8cdd84ef021c027a01f07442cfc7ae7339d823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2427.1999.00409.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2427.1999.00409.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1883487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Webster, J. R.</creatorcontrib><creatorcontrib>Benfield, E. F.</creatorcontrib><creatorcontrib>Ehrman, T. P.</creatorcontrib><creatorcontrib>Schaeffer, M. A.</creatorcontrib><creatorcontrib>Tank, J. L.</creatorcontrib><creatorcontrib>Hutchens, J. J.</creatorcontrib><creatorcontrib>D'Angelo, D. J.</creatorcontrib><title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title><title>Freshwater biology</title><description>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (&lt;_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>breakdown</subject><subject>Coweeta</subject><subject>detritus</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>stream</subject><subject>Synecology</subject><subject>transport</subject><subject>USA, North Carolina</subject><subject>USA, North Carolina, Otto</subject><issn>0046-5070</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkdGK1DAUhosoOK6-QxDxrjVJ0yQFQXYHd9110BtlLkM2PaEZ26QmHWbm7U2dZQWv9ioh5_v-cPiLAhFcEcz4h11Fat6UlFFRkbZtK4wZbqvjs2L1OHherPIrLxss8MviVUo7jLFsBF0Vp22vZ9TraQKf0ByQHoZg-rkPPuwTGvUM0ekBzQtm8zAh5zOW5gh6TJ_QJUonP_eQXELBIg8HpH2Hpv394FIPXcZtiDnHBY9sDCNahwPArF8XL3JegjcP50Xx8_rzj_WXcvP95nZ9uSkN47wtQXTWauDUdI023ErOOmtAN_cgTddJBhZTYjAVGhOLBWPUWCM0iLpuO0nri-L9OXeK4fce0qxGlwwMg_aQV1RECIZly58A1rLFEmfw7X_gLuyjz0soWhPWUEyXb-UZMjGkFMGqKbpRx5MiWC3NqZ1aClJLQWppTv1tTh2z-u4hXyejBxu1Ny7986WsmRQZ-3jGDm6A05Pj1fX2Kl-yXp51l2Y4Puo6_lJc1KJR2283imyuxPau2aiv9R9jb705</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Webster, J. R.</creator><creator>Benfield, E. F.</creator><creator>Ehrman, T. P.</creator><creator>Schaeffer, M. A.</creator><creator>Tank, J. L.</creator><creator>Hutchens, J. J.</creator><creator>D'Angelo, D. J.</creator><general>Blackwell Science, Ltd</general><general>Blackwell Science</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>H96</scope></search><sort><creationdate>199906</creationdate><title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title><author>Webster, J. R. ; Benfield, E. F. ; Ehrman, T. P. ; Schaeffer, M. A. ; Tank, J. L. ; Hutchens, J. J. ; D'Angelo, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4669-e7dffae62cd5ac6f864dfcea5be8cdd84ef021c027a01f07442cfc7ae7339d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>breakdown</topic><topic>Coweeta</topic><topic>detritus</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>stream</topic><topic>Synecology</topic><topic>transport</topic><topic>USA, North Carolina</topic><topic>USA, North Carolina, Otto</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webster, J. R.</creatorcontrib><creatorcontrib>Benfield, E. F.</creatorcontrib><creatorcontrib>Ehrman, T. P.</creatorcontrib><creatorcontrib>Schaeffer, M. A.</creatorcontrib><creatorcontrib>Tank, J. L.</creatorcontrib><creatorcontrib>Hutchens, J. J.</creatorcontrib><creatorcontrib>D'Angelo, D. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webster, J. R.</au><au>Benfield, E. F.</au><au>Ehrman, T. P.</au><au>Schaeffer, M. A.</au><au>Tank, J. L.</au><au>Hutchens, J. J.</au><au>D'Angelo, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</atitle><jtitle>Freshwater biology</jtitle><date>1999-06</date><risdate>1999</risdate><volume>41</volume><issue>4</issue><spage>687</spage><epage>705</epage><pages>687-705</pages><issn>0046-5070</issn><eissn>1365-2427</eissn><coden>FWBLAB</coden><abstract>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (&lt;_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science, Ltd</pub><doi>10.1046/j.1365-2427.1999.00409.x</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0046-5070
ispartof Freshwater biology, 1999-06, Vol.41 (4), p.687-705
issn 0046-5070
1365-2427
language eng
recordid cdi_proquest_miscellaneous_17740896
source Wiley Online Library Journals Frontfile Complete
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
breakdown
Coweeta
detritus
Fresh water ecosystems
Freshwater
Fundamental and applied biological sciences. Psychology
stream
Synecology
transport
USA, North Carolina
USA, North Carolina, Otto
title What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20happens%20to%20allochthonous%20material%20that%20falls%20into%20streams?%20A%20synthesis%20of%20new%20and%20published%20information%20from%20Coweeta&rft.jtitle=Freshwater%20biology&rft.au=Webster,%20J.%20R.&rft.date=1999-06&rft.volume=41&rft.issue=4&rft.spage=687&rft.epage=705&rft.pages=687-705&rft.issn=0046-5070&rft.eissn=1365-2427&rft.coden=FWBLAB&rft_id=info:doi/10.1046/j.1365-2427.1999.00409.x&rft_dat=%3Cproquest_cross%3E17740896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231452022&rft_id=info:pmid/&rfr_iscdi=true